
International Journal of Engineering and Science Invention (IJESI)

ISSN (Online): 2319-6734, ISSN (Print): 2319-6726

www.ijesi.org ||Volume 12 Issue 9 September 2023 || PP 49-57

DOI: 10.35629/6734-12094957 www.ijesi.org 49 | Page

Google Cloud Services Based On Service Level Agreement

& Quality of Services

BILAL AHMED1, DR. PRASADU PEDDI2
Research Scholar, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan

Professor, Dept. of CSE & IT, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan

Abstract: Cloud computing has revolutionized IT architecture with its scalable, adaptable, and affordable

solutions. Google Cloud Services (GCS) offers a range of services, including computing, storage, networking, AI,

and ML. To ensure optimum service delivery, Google Cloud uses strong Quality of Service (QoS) measurements

and a well-defined Service Level Agreement (SLA). This article examines Google Cloud's SLA system, analyzing

its main parts such as service credits, latency considerations, performance benchmarks, and uptime assurances.

It also explores how quality of service factors like availability, dependability, scalability, and security are

maintained. Google Cloud's SLAs are crucial for its dependability, as they outline rules for service availability,

performance objectives, and compensation mechanisms in case of service failures. Customer satisfaction is

ensured by service credit policies, response time assurances, and uptime agreements. Google Cloud uses rigorous

QoS procedures to guarantee scalability, security, and high availability. To improve system stability, Google

Cloud uses security mechanisms, load balancing, and multiple data centers. This report offers advice for

businesses looking to optimize their cloud infrastructure, maximize productivity, and minimize downtime. By

understanding these factors, enterprises can make informed decisions about cloud adoption and risk management,

and ensure compliance with Google Cloud's SLA conditions.

Keywords: Cloud Computing, Edge Computing, Virtualization, Server less-based AI applications

I. INTRODUCTION
Edge computing is a method of data processing that uses network nodes like base stations and access

points instead of traditional data centers. This approach reduces network latency by placing computers in close

proximity to mobile devices, such as at access points or base stations. The expansion of edge computing has great

promise for businesses and systems, with applications such as object recognition, intrusion detection, augmented

reality, autonomous driving, and providing storage and computing resources on a massive scale with minimal

delay. Server-less edge computing offers various advantages over other network edge designs, allowing users to

focus on creating and running functions instead of managing resources. This research focuses on a server-less

edge computing architecture for artificial intelligence applications. Edge computing offers several benefits,

including reduced latency, improved system stability, and reduced energy and bandwidth costs compared to

traditional cloud computing systems. It also allows for more flexible edge computing environments, as edge nodes

can come from anywhere and operate on any platform. Virtualization technologies make the service compatible

with a broad variety of devices and systems, allowing applications to run in numerous edge computing

environments.

Isolation is a practical choice for improving system stability, as many applications on the network's perimeter use

containers, compact, standardized software units that include the packages and environments required to execute

the service code. Isolation safeguards other containers on the same host in case of a single container failure,

preventing the possibility of the host computer going down due to a single container failure. System software is

essential for applications to access hardware resources, and virtualization is crucial for highly scalable edge

computing. As virtualization becomes more prevalent, the need for server-side resource sharing to handle requests

from multiple users increases. The four mainstays of edge computing server architectures are classical, container,

server-less, and virtual machine designs, each catering to a different degree of virtualization and resource sharing.

In virtual machine-based edge architecture, several virtual machines (VMs) may share the hardware resources of

a single server, but their operating systems remain unchanged. This allows peripheral applications on the network

to operate autonomously since they use their own virtual machines.

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 50 | Page

Figure 1: Level 1: Virtual machines

Via VM solutions, the relative advantages of virtualization technology—including platform freedom and

isolation—are efficiently realized. Although virtual computers have made great strides, installing a whole

operating system is still a major hassle when using one. The approach that uses virtual machines needs a lot of

software and hardware. Poorly equipped devices will not be able to make proper use of it. One virtual machine

architecture that can multitask in real-time is Gabriel, and it's available for usage in cognitive wearable apps [5].

This is an example of architecture for computing at the edge that relies on virtual machines.

Incorporating Warehouse Area Containers provide a lightweight virtualization solution that may be used

in edge computing architectures. Every container shares the same set of physical components and operating

system. Containers for software only include the bare minimum of OS components and application code required

to run a single programmer [6]. This result in less hardware requirements compared to virtual machines. This

makes the deployment of new services considerably quicker as compared to alternatives that rely on virtual

machines. The Kilda architecture was an early attempt to use container-based edge computing for speech

recognition [7]. It enabled faster automatic speech recognition and could accommodate several users at once.

Figure 2: Level 2: Containers

Server less computing is an approach focused on the edge, allowing for shared container runtime and

prioritizing client-side service applications. This platform offers a virtualization-based execution environment,

with developers responsible for handling server less activities independently. The primary area of study is AI apps

developed using server less edge computing.

Object detecting software is crucial in today's digital world, as devices need to take pictures or record

videos before sending them to an object recognition server. Edge computing allows for distributed object

identification in real-time by using the processing power and data storage of adjacent devices and infrastructures.

For networks with one stage, YOLO is the best option, while faster-RCNN is the gold standard for networks with

two stages. The YOLOv5-based object identification application outperforms rival RCNN algorithms on inference

challenges.

Virtual reality systems can enhance user experience by superimposing digital content on the real

environment, allowing users and places to engage in three-dimensional, real-time interaction. However, it takes

more time and power for mobile devices to run augmented reality algorithms. Edge computing real-time access

and reduced latency may radically alter this industry. Autonomous driving requires real-time, low-latency

processing capability to handle massive volumes of data. Implementing stateless functions eliminates the need for

servers, allowing multiple user requests to be processed in parallel. Developers are only charged per hour for

computationally expensive tasks, and users are not billed for resources until the function is executed. Server less

computing also allows for the execution of stateless services and resource management. The three main parts of

a server less architecture are the worker, master, and edge. Worker nodes carry out tasks and code, while master

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 51 | Page

nodes handle resource management and event distribution. The server less platform is easy to use if followed

instructions.

Figure 3: Server less platform architecture

Server less-based AI applications

Academics are very interested in the potential benefits of using AI into server less edge computing. The

authors provided a method for developing and deploying AI apps to the server less edge in [21]. This platform

streamlines the process of developing and managing AI workflow operations at the edge. According to [22], the

first suggestion for the Wear Mask AI software to identify COVID-19 face masks was to use server less edge

computing. This server less face mask identification programmer is compatible with standard mobile and desktop

computers. The main objective of [23] was to provide server less services for processing movies in order to cut

expenses and boost efficiency. For this project, our team decided to construct an object detection app using a

server less architecture.

Studies in relevant domains include process modeling for server less architecture. There was a proposal

for a consistent method of representing server less application processes in [24]. Predicting the end-to-end

response time also warrants more research. The authors' recommendation to formally describe the server less

approach would be a huge boon to our project. We may enhance the system model by using queuing theory,

drawing on our knowledge of service process modeling in server less architecture. Built models in two distinct

modeling languages for use in edge computing tasks [25]. Although server less architecture was not the main

focus of the essay, the part about modeling in edge computing architecture was very useful.

There are many existing frameworks from which to choose when implementing the server less

architecture. Tubeless, Apache Open Whisk, Open FaaS, and Native are four free servers fewer frameworks

mentioned in the authors' evaluation [26]. You may install any of these four free frameworks using a Kubernetes

cluster. The flexibility of Kubernetes, the leading edge computing platform, in creating and implementing

complicated solutions has attracted developers from many walks of life. Since this architecture is server less, it

also makes advantage of Kubernetes and Docker. Built on top of Open Whisk, the server less architecture

described in reference [27] works with many other frameworks. Recording server less architecture's latency,

throughput, and scalability was their main focus. In these particular cases, we choose to use the YOLOv5 method

for object recognition. The YOLOv5 technology has been used by researchers to create a variety of object

detecting applications. The authors of [28] used the YOLOv5 method to develop and distribute software that can

detect cow activity over many networks. The authors' evaluation of various computing infrastructures makes the

use of server less edge computing architecture in this project very evident. If you want to know how to include

YOLOv5 into your project, read [29]. The authors used YOLOv5 to create a face mask recognition system.

Approaches and Methodologies

Evaluating the performance of AI applications requires the deployment of the server less edge computing

architecture. Once the server less architecture is up and running, the object detection application may be started.

Following the three steps of service delivery—arrival, waiting, and serving—is the next logical step. After

deciding to conduct a system performance study, the next step is to administer a series of tests. The efficiency of

the system and some ideas for improvements based on queuing theory make up the last part of our examination.

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 52 | Page

Figure 4: Research Process

The data analysis technique used in this study involves quantitative approaches for analyzing time and

confidence scores, while qualitative analysis is used to evaluate item detection accuracy. Quantitative approaches

involve running service simulations with different confidence score criteria to assess the effectiveness of object

detection. Time analysis involves gathering critical times to model the system using queuing theory, including

system, waiting, object detection, and service timestamps. Recommendations for enhancing the queuing

mechanism of the server-less architecture are made based on quantitative investigation results.

The data is analyzed using MATLAB, which provides a table displaying service timings before

processing and analysis. Performance test results help analyze the server-less architecture and choose the optimal

queuing model. The system typically maintains a queue for users and serves them based on the first-in, first-out

(FIFO) criterion. However, building a queue is not always necessary, as users can be served immediately upon

log-in. Process sharing is an egalitarian approach where resources and service capabilities are distributed equally

across all users or jobs. This leads to a direct proportional relationship between service time and the number of

users, resulting in lower average response times. To install the server-less architecture, a virtual machine (VM) is

used instead of a laptop. Oracle VM Virtual Box powers all VMs, requiring at least 40 GB of storage space, 4 GB

of RAM, and 4 CPU cores. Docker and Kubernetes were used to build the server-less architecture, while YOLOv5

was used to build the object recognition software. Docker is an open-source tool that manages the process of

creating containers using Docker images. The open-source Docker Hub infrastructure simplifies sharing and

storing container images, making it easy to launch containers. Docker Files and Docker images allow for quick

and easy container creation and launch into production mode. The master node coordinates the cluster's activities,

delegating tasks and requests to worker nodes. Pods are clusters of worker nodes that containers run in, with pods

sharing a connection to the same node. Sublet coordinates the flow of messages to and from worker nodes,

ensuring container launch and operation. The Kubernetes command-line interface, or kubectl, provides command-

line access to the cluster, allowing management by sending instructions to the master node. An internal tool is

required to monitor connections to pods, such as Weave Net, which handles port mapping, connection formation,

and routing within the cluster. This tool works effectively for our project, without impacting load balancing or

service discovery.

System design

The server less platform is really just two Docker and Kubernetes virtual machines. The master node and

the worker node are both represented by the two virtual computers. Under the supervision of the master node, the

worker node's containers and pods are managed and coordinated. The worker node is now hosting the object

detection programmer. Docker, Kubernetes, and Weave make up the master node.

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 53 | Page

Figure 5: System design

Global Online Network. A worker node is comprised of the following software components: YOLOv5

and an automated object recognition programmer that is based on Docker. The server less architecture of the

system is based on Kubernetes and Docker. Master and worker nodes are linked via Weave Net. With YOLOv5,

there is an object detection tool available to users. See below for the specifics of this agreement. One cluster may

be configured for the control plane of your system using Docker and Kubernetes. The Weave Net architecture is

one option for connecting several nodes and pods. Once Docker and Kubernetes are ready to go, we can construct

a master-worker Kubernetes cluster and verify that all of the pods and nodes inside it are able to interact with one

another. After configuring the master node using kubectl, we can control the pods and containers on the worker

node via the command line. In a cluster, the worker node is in charge of actually executing services and reporting

its progress to the master node. You must keep this difference in mind. With server less technology in place, the

worker node may be used for service development. We will implement the object detection algorithm using

YOLOv5. After receiving the YOLOv5 image, the worker node may begin to build containers. Through

containers, users may access server less services. The final step is to create service requests using Python scripts.

Python programmers may be used to manipulate the arrival process, giving the impression that users are logging

into the system when in fact they are not. Moving to a server less architecture will allow us to evaluate the object

detection service's performance after the previous stages are complete.

Implementation

Oracle Virtual Machine Platform The system was configured with two virtual machines (VMs) using

Virtual Box. With 4 CPU cores, 4 GB of RAM, and 40 GB of storage, each virtual machine will provide enough

resources for the object identification algorithms. Virtual machines need Internet connectivity before they can

configure networks. The ability for the two virtual machines to converse and collaborate is of the utmost

importance. As a last step, provide static IP addresses to these two virtual computers. A host-only adapter and a

network address translator (NAT) are required for this to operate. Network address translation (NAT) adapters

enable virtual machines to interact with the internet, as opposed to host-only adapters. In order to connect to the

Internet using NAT adapters, it is essential to acquire static IP addresses. A host-only adapter is the only means

of doing this. The "enp0s3" adapter manages internet connectivity and network address translation (NAT), while

the "enp0s8" adapter allows us to connect more virtual machines to our desktop. Following the configuration of

the two virtual PCs, all project criteria were met. The 192.168.56.3 and 192.168.56.2 internal IP addresses are

shared by the virtual machines running the Master and Worker roles, respectively.

Figure 6: Network settings

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 54 | Page

 The Master node should be configured with Kubernetes and Docker, along with software plug-ins like

kubectl and Weave Net. The cluster's orchestration and administration are handled by these nodes. To enable

sublet, deactivate swap and configure the hostname. To run the object detection service on the server-less

architecture, create a Poisson arrival model for the user arrival process. Each user job must be delivered

independently using a Poisson approach. To achieve this, use the Pope () function in Python. This allows child

programmers to run autonomously from their parent processes. A sub process is used to mimic a user's request,

and the object detection service is custom-coded to interface with each user's script. The main process's class "sub

process. Pope ()" is used to for loop over each user's sub process script. The "kubectl exec" command is used to

run the object detection service in the sub process script. To avoid I/O issues, manually terminate the sub process

after object identification is complete. The kubectl run command is used to start the container containing the

service to enable object detection.

In this YOLO object identification example, the weight is a pre-trained YOLOv5s model, which is

lightweight due to its speed and object recognition capabilities. Folders containing user photos, arrival rate,

confidence level, and total users are scriptable parameters.

Figure 7: Main process script

Figure 8: Sub process script

The experimental control group consists of equal photos to distinguish between them. The confidence

score cutoff is set at 0.25 from the YOLOv5 object detection algorithm, and the control group is subjected to a

default threshold of 0.25. The arrival rate is set at 0.2 users/s, which allows the system to take in new users at a

Poisson rate. This is advantageous for investigating the connection between user load and system availability. The

control group will conduct three trials with different user groups to evaluate their performance. Two crucial factors

must be considered when assessing outcomes: prioritizing quality time together and applying queuing theory to

the problem of system description. Time intervals for the system, object detection, pre-processing, inference,

results selection, and service are all part of this process. Verifying the accuracy of the findings is the second step

in assessing an object recognition algorithm. A high-quality object detection result is one that correctly identifies

most items with minimal false positives. To ensure the server less architecture software works as expected, the

object detection findings are displayed. Three user-submitted pictures, one with a single image, and 10 user-

submitted images, all of which include multiple images, are selected at random from the coco128 collection.

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 55 | Page

Figure 9: Object detection example 1 for single-image user

Figure 10: Object detection example 2 for single-image user

See below for the results of the control group experiment for this project. All other groups are assessed

in relation to this control group. With a confidence level of 0.25 and an arrival rate of 0.2 users/second, we utilize

the same photographs for users of the same class here. During the request generation process, one request stands

in for every user who logs into the system. It seems that five individuals are using the programmer, since we have

seen five requests for user type (a). Type (a) has five users, all of whom are single-image users—that is, their

projects include only a single photo. As the system is now getting logins from three distinct users, we will need

to generate three requests for the "b" user type. Type (b) has three people who all utilize multiple photographs and

would want to work with ten images each. For a c-type user, we generate five queries. Three of these people just

have a single photo, while two of them have a lot. While users 1, 2, and 3 each utilize a single image, two of them

make extensive use of photos (c). The relationships between user type, request, user, and image are shown visually

in Figures 5.7 to 5.9. The preceding graphics demonstrate correlations that may be useful for other experimental

groups as well.

Here are the results for the control group. The first step is to create a table that categorizes the time results

according to the user type. Here we shall see mathematical representations of the link between the number of users

and the length of the service. To clarify, the image is used for timing purposes throughout pre-process, inference,

NMS, and object detection. People with several images tend to have more efficient use of their time than those

with only one. We only use one measure for persons with one picture when it comes to profile images. If you're

utilizing several photos, the tables will show you how long it takes to analyze all 10. User behavior is used to

determine system and service timeframes instead of visual data. Because of this, averaging system or service time

is unnecessary. We allot one system time and one service time for each user. These readings are foundational to

every experiment in this project.

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 56 | Page

Figure 11: Service time and user number of user type (a) in control group

The time data, together with the correlations between service time and user number, may be used to

extrapolate results for various experimental groups and user categories. A separate analysis is provided for every

finding. With a little comparison, we can observe that the two scenarios have very similar system and service

times. There is almost no waiting time in the system since service time makes up the great majority of system

time—roughly 97% to 99%. Users are catered to instantly upon accessing the system; queues are not necessary.

That being the case, it can't be that easy to simulate the server less architecture using mathematical models and

the queue. We identify a strong association between the number of users and the duration of service time available

to users, even when we maintain the quantity of photos per user constant. To evaluate the correlation between the

number of users and the amount of time spent on the system, all trials should employ user type (a). When

comparing the system with various users, user type (a) is ideal since the service time is much shorter and the

quantity of images per user remains same. When this kind of user finishes using the system, they log out.

II. Conclusion
This project presents an object detection application using a server-less architecture and a mathematical

model. The project aims to build practical models of server-less computing architectures by verifying that simple

models, such as single-server or multi-server queues, can accurately mimic real-world system actions. The project

involved conducting literature reviews, designing and implementing the system, and testing its functionality.

Results showed that the number of users significantly affects service availability, making mathematical models

unsuitable due to the lack of a queue. The study postulated that this server-less architecture may be best described

by the processor sharing paradigm. The experiment provided a comprehensive description of the application of

an item identification approach to a server-less architecture, and an analysis of the performance of server-less

object detection software based on YOLOv5. The project was successful due to these outcomes and

improvements. However, the virtual machine (VM) has restricted capabilities for processing and memory, which

directly impacts service latency and speed, which in turn impacts object recognition performance. Large

organizations often use resource-rich server-less platforms to launch their services, unlike the circumstances in

this experiment. The testing focused on a single server configuration due to time and material restrictions. Future

research could explore the possibility of installing multiple servers. User type (c) is related to two types of users:

those with many photos and those with only one. After appropriate adjustments, the arrival rate will be the same

for both types of users, or they may use a separate queuing system if their arrival rates differ.

REFERENCES
[1]. Abbadi, IM & Ruan, A (2013), “Towards trustworthy resource scheduling in clouds”, Vol. 8, Issue. 6, pp.973-984.
[2]. Yan, Zhenget al., (2011), “Advances in Mobile Cloud Computing and Big Data”, Springer Computational Intelligence and

Complexity, ISBN 978- 3-319-45143-5.

[3]. PengLi; Song Guo; Toshiaki Miyazaki; Miao Xie; Jiankun Hu; WeihuaZhuang (2016), “Privacy- Preserving Access to Big Data in

the Cloud”, IEEE Cloud Computing, Vol.3, No.5, pp.34 -42.

[4]. Yue-Qin, Fan, (2017), “Security and Privacy Challenges in Mobile Cloud Computing: Survey and Way Ahead”.

[5]. Lin, Guoyuanet,(2014),“Cloud service selection: State-of-the-art and future research directions", Elsevier, pp.134-150.
[6]. Li, Xiaoyong, and Junpinget, (2013), “Info-Trust: A Multi-Criteria and Adaptive Trustworthiness Calculation Mechanism for

Information Sources”, IEEE Access, 2013

[7]. Marcos Assunção.D, Rodrigo Calheiros.N, Silvia Bianchi, Rajkumar Buyya., (2015),” Big data computing and clouds: Trends and
future directions‖, Journal of Parallel and Distributed Computing”, Vol. 79–80, pp. 3-15.

[8]. Saurabh Singh, Young Sik Jeong, Jong HyukPark, (2016) “A survey on cloud comput ing security: Issues, threats, and solutions”,

Journal of Network and Computer Applications, Vol. 75, pp.200-222.
[9]. Fan, Wenjuan, and Harry Perroset, (2017), “Performance Analysis of the Reserve Capacity Policy for Dynamic VM allocation in a

SaaS environment”.

[10]. Sukhpal Singh, (2016), “A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges”, Journal of Grid Computing.

Google Cloud Services Based On Service Level Agreement & Quality of Services

DOI: 10.35629/6734-12094957 www.ijesi.org 57 | Page

[11]. Zhang, Ruiet, (2016), “Key Technology competencies of Progressive in Cloud”.

[12]. Zhang, Raiart, (2015), “Cloud mobility over the bigdata”, IEEE Simulation Modelling Practice.

[13]. Yongkui Liu, (2014), “Key Issues of Cloud Manufacturing Applied to Agricultural Production”.
[14]. Sukhpal Singh, (2016), “A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges”.

[15]. Seokho Son, “A SLA-based Cloud Computing Framework: Workload and Location Aware Resource Allocation to Distributed Data

Centers in a Cloud”, IEEE Journal of Cloud Computing, 2015
[16]. Prasadu Peddi (2017) “Design of Simulators for Job Group Resource Allocation Scheduling In Grid and Cloud Computing

Environments”, ISSN: 2319- 8753 volume 6 issue 8 pp: 17805-17811.

[17]. PengLi; Song Guo; Toshiaki Miyazaki; Miao Xie; Jiankun Hu; Weihua Zhuang (2016), “Privacy- Preserving Access to Big Data in
the Cloud” , Vol.3,No.5, pp.34 -42.

[18]. Gaetano Anastasi, Emanuele Carlini, Massimo Coppola, and Patrizio Dazzi., (2017), “QoS-aware genetic Cloud Brokering Future

Generation Computer Systems”, Vol. 75, pp. 1-13.
[19]. Prasadu Peddi (2016), Comparative study on cloud optimized resource and prediction using machine learning algorithm, ISSN: 2455-

6300, volume 1, issue 3, pp: 88-94.

[20]. Halabi, Talal, and Martine Bellaiche.,(2017), ”Towards quantification and evaluation of security of Cloud Service Providers”.
[21]. Armbrust. M, A. Fox, Griffith. R, Joseph A. D, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica., "A view of cloud

computing", vol. 53, no. 4, pp. 50-58.

[22]. Md Whaiduzzaman, Mehdi Sookhak, Abdullah Gani, Rajkumar Buyy, “A survey on vehicular cloud computing”, Journal of Network
and Computer Applications,

