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Abstract: Cloud computing has revolutionized IT architecture with its scalable, adaptable, and affordable 

solutions. Google Cloud Services (GCS) offers a range of services, including computing, storage, networking, AI, 

and ML. To ensure optimum service delivery, Google Cloud uses strong Quality of Service (QoS) measurements 

and a well-defined Service Level Agreement (SLA). This article examines Google Cloud's SLA system, analyzing 

its main parts such as service credits, latency considerations, performance benchmarks, and uptime assurances. 

It also explores how quality of service factors like availability, dependability, scalability, and security are 

maintained. Google Cloud's SLAs are crucial for its dependability, as they outline rules for service availability, 

performance objectives, and compensation mechanisms in case of service failures. Customer satisfaction is 

ensured by service credit policies, response time assurances, and uptime agreements. Google Cloud uses rigorous 

QoS procedures to guarantee scalability, security, and high availability. To improve system stability, Google 

Cloud uses security mechanisms, load balancing, and multiple data centers. This report offers advice for 

businesses looking to optimize their cloud infrastructure, maximize productivity, and minimize downtime. By 

understanding these factors, enterprises can make informed decisions about cloud adoption and risk management, 

and ensure compliance with Google Cloud's SLA conditions. 
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I. INTRODUCTION 
Edge computing is a method of data processing that uses network nodes like base stations and access 

points instead of traditional data centers. This approach reduces network latency by placing computers in close 

proximity to mobile devices, such as at access points or base stations. The expansion of edge computing has great 

promise for businesses and systems, with applications such as object recognition, intrusion detection, augmented 

reality, autonomous driving, and providing storage and computing resources on a massive scale with minimal 

delay. Server-less edge computing offers various advantages over other network edge designs, allowing users to 

focus on creating and running functions instead of managing resources. This research focuses on a server-less 

edge computing architecture for artificial intelligence applications. Edge computing offers several benefits, 

including reduced latency, improved system stability, and reduced energy and bandwidth costs compared to 

traditional cloud computing systems. It also allows for more flexible edge computing environments, as edge nodes 

can come from anywhere and operate on any platform. Virtualization technologies make the service compatible 

with a broad variety of devices and systems, allowing applications to run in numerous edge computing 

environments. 

Isolation is a practical choice for improving system stability, as many applications on the network's perimeter use 

containers, compact, standardized software units that include the packages and environments required to execute 

the service code. Isolation safeguards other containers on the same host in case of a single container failure, 

preventing the possibility of the host computer going down due to a single container failure. System software is 

essential for applications to access hardware resources, and virtualization is crucial for highly scalable edge 

computing. As virtualization becomes more prevalent, the need for server-side resource sharing to handle requests 

from multiple users increases. The four mainstays of edge computing server architectures are classical, container, 

server-less, and virtual machine designs, each catering to a different degree of virtualization and resource sharing. 

In virtual machine-based edge architecture, several virtual machines (VMs) may share the hardware resources of 

a single server, but their operating systems remain unchanged. This allows peripheral applications on the network 

to operate autonomously since they use their own virtual machines. 
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Figure 1: Level 1: Virtual machines 

 

Via VM solutions, the relative advantages of virtualization technology—including platform freedom and 

isolation—are efficiently realized. Although virtual computers have made great strides, installing a whole 

operating system is still a major hassle when using one. The approach that uses virtual machines needs a lot of 

software and hardware. Poorly equipped devices will not be able to make proper use of it. One virtual machine 

architecture that can multitask in real-time is Gabriel, and it's available for usage in cognitive wearable apps [5]. 

This is an example of architecture for computing at the edge that relies on virtual machines. 

Incorporating Warehouse Area Containers provide a lightweight virtualization solution that may be used 

in edge computing architectures. Every container shares the same set of physical components and operating 

system. Containers for software only include the bare minimum of OS components and application code required 

to run a single programmer [6]. This result in less hardware requirements compared to virtual machines. This 

makes the deployment of new services considerably quicker as compared to alternatives that rely on virtual 

machines. The Kilda architecture was an early attempt to use container-based edge computing for speech 

recognition [7]. It enabled faster automatic speech recognition and could accommodate several users at once. 

 
Figure 2: Level 2: Containers 

 

Server less computing is an approach focused on the edge, allowing for shared container runtime and 

prioritizing client-side service applications. This platform offers a virtualization-based execution environment, 

with developers responsible for handling server less activities independently. The primary area of study is AI apps 

developed using server less edge computing. 

Object detecting software is crucial in today's digital world, as devices need to take pictures or record 

videos before sending them to an object recognition server. Edge computing allows for distributed object 

identification in real-time by using the processing power and data storage of adjacent devices and infrastructures. 

For networks with one stage, YOLO is the best option, while faster-RCNN is the gold standard for networks with 

two stages. The YOLOv5-based object identification application outperforms rival RCNN algorithms on inference 

challenges. 

Virtual reality systems can enhance user experience by superimposing digital content on the real 

environment, allowing users and places to engage in three-dimensional, real-time interaction. However, it takes 

more time and power for mobile devices to run augmented reality algorithms. Edge computing real-time access 

and reduced latency may radically alter this industry. Autonomous driving requires real-time, low-latency 

processing capability to handle massive volumes of data. Implementing stateless functions eliminates the need for 

servers, allowing multiple user requests to be processed in parallel. Developers are only charged per hour for 

computationally expensive tasks, and users are not billed for resources until the function is executed. Server less 

computing also allows for the execution of stateless services and resource management. The three main parts of 

a server less architecture are the worker, master, and edge. Worker nodes carry out tasks and code, while master 
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nodes handle resource management and event distribution. The server less platform is easy to use if followed 

instructions. 

 
Figure 3: Server less platform architecture 

 

Server less-based AI applications 

Academics are very interested in the potential benefits of using AI into server less edge computing. The 

authors provided a method for developing and deploying AI apps to the server less edge in [21]. This platform 

streamlines the process of developing and managing AI workflow operations at the edge. According to [22], the 

first suggestion for the Wear Mask AI software to identify COVID-19 face masks was to use server less edge 

computing. This server less face mask identification programmer is compatible with standard mobile and desktop 

computers. The main objective of [23] was to provide server less services for processing movies in order to cut 

expenses and boost efficiency. For this project, our team decided to construct an object detection app using a 

server less architecture. 

Studies in relevant domains include process modeling for server less architecture. There was a proposal 

for a consistent method of representing server less application processes in [24]. Predicting the end-to-end 

response time also warrants more research. The authors' recommendation to formally describe the server less 

approach would be a huge boon to our project. We may enhance the system model by using queuing theory, 

drawing on our knowledge of service process modeling in server less architecture. Built models in two distinct 

modeling languages for use in edge computing tasks [25]. Although server less architecture was not the main 

focus of the essay, the part about modeling in edge computing architecture was very useful. 

There are many existing frameworks from which to choose when implementing the server less 

architecture. Tubeless, Apache Open Whisk, Open FaaS, and Native are four free servers fewer frameworks 

mentioned in the authors' evaluation [26]. You may install any of these four free frameworks using a Kubernetes 

cluster. The flexibility of Kubernetes, the leading edge computing platform, in creating and implementing 

complicated solutions has attracted developers from many walks of life. Since this architecture is server less, it 

also makes advantage of Kubernetes and Docker. Built on top of Open Whisk, the server less architecture 

described in reference [27] works with many other frameworks. Recording server less architecture's latency, 

throughput, and scalability was their main focus. In these particular cases, we choose to use the YOLOv5 method 

for object recognition. The YOLOv5 technology has been used by researchers to create a variety of object 

detecting applications. The authors of [28] used the YOLOv5 method to develop and distribute software that can 

detect cow activity over many networks. The authors' evaluation of various computing infrastructures makes the 

use of server less edge computing architecture in this project very evident. If you want to know how to include 

YOLOv5 into your project, read [29]. The authors used YOLOv5 to create a face mask recognition system. 

 

Approaches and Methodologies 

Evaluating the performance of AI applications requires the deployment of the server less edge computing 

architecture. Once the server less architecture is up and running, the object detection application may be started. 

Following the three steps of service delivery—arrival, waiting, and serving—is the next logical step. After 

deciding to conduct a system performance study, the next step is to administer a series of tests. The efficiency of 

the system and some ideas for improvements based on queuing theory make up the last part of our examination. 
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Figure 4: Research Process 

 

The data analysis technique used in this study involves quantitative approaches for analyzing time and 

confidence scores, while qualitative analysis is used to evaluate item detection accuracy. Quantitative approaches 

involve running service simulations with different confidence score criteria to assess the effectiveness of object 

detection. Time analysis involves gathering critical times to model the system using queuing theory, including 

system, waiting, object detection, and service timestamps. Recommendations for enhancing the queuing 

mechanism of the server-less architecture are made based on quantitative investigation results. 

The data is analyzed using MATLAB, which provides a table displaying service timings before 

processing and analysis. Performance test results help analyze the server-less architecture and choose the optimal 

queuing model. The system typically maintains a queue for users and serves them based on the first-in, first-out 

(FIFO) criterion. However, building a queue is not always necessary, as users can be served immediately upon 

log-in. Process sharing is an egalitarian approach where resources and service capabilities are distributed equally 

across all users or jobs. This leads to a direct proportional relationship between service time and the number of 

users, resulting in lower average response times. To install the server-less architecture, a virtual machine (VM) is 

used instead of a laptop. Oracle VM Virtual Box powers all VMs, requiring at least 40 GB of storage space, 4 GB 

of RAM, and 4 CPU cores. Docker and Kubernetes were used to build the server-less architecture, while YOLOv5 

was used to build the object recognition software. Docker is an open-source tool that manages the process of 

creating containers using Docker images. The open-source Docker Hub infrastructure simplifies sharing and 

storing container images, making it easy to launch containers. Docker Files and Docker images allow for quick 

and easy container creation and launch into production mode. The master node coordinates the cluster's activities, 

delegating tasks and requests to worker nodes. Pods are clusters of worker nodes that containers run in, with pods 

sharing a connection to the same node. Sublet coordinates the flow of messages to and from worker nodes, 

ensuring container launch and operation. The Kubernetes command-line interface, or kubectl, provides command-

line access to the cluster, allowing management by sending instructions to the master node. An internal tool is 

required to monitor connections to pods, such as Weave Net, which handles port mapping, connection formation, 

and routing within the cluster. This tool works effectively for our project, without impacting load balancing or 

service discovery. 

 

System design 

The server less platform is really just two Docker and Kubernetes virtual machines. The master node and 

the worker node are both represented by the two virtual computers. Under the supervision of the master node, the 

worker node's containers and pods are managed and coordinated. The worker node is now hosting the object 

detection programmer. Docker, Kubernetes, and Weave make up the master node. 
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Figure 5: System design 

 

Global Online Network. A worker node is comprised of the following software components: YOLOv5 

and an automated object recognition programmer that is based on Docker. The server less architecture of the 

system is based on Kubernetes and Docker. Master and worker nodes are linked via Weave Net. With YOLOv5, 

there is an object detection tool available to users. See below for the specifics of this agreement. One cluster may 

be configured for the control plane of your system using Docker and Kubernetes. The Weave Net architecture is 

one option for connecting several nodes and pods. Once Docker and Kubernetes are ready to go, we can construct 

a master-worker Kubernetes cluster and verify that all of the pods and nodes inside it are able to interact with one 

another. After configuring the master node using kubectl, we can control the pods and containers on the worker 

node via the command line. In a cluster, the worker node is in charge of actually executing services and reporting 

its progress to the master node. You must keep this difference in mind. With server less technology in place, the 

worker node may be used for service development. We will implement the object detection algorithm using 

YOLOv5. After receiving the YOLOv5 image, the worker node may begin to build containers. Through 

containers, users may access server less services. The final step is to create service requests using Python scripts. 

Python programmers may be used to manipulate the arrival process, giving the impression that users are logging 

into the system when in fact they are not. Moving to a server less architecture will allow us to evaluate the object 

detection service's performance after the previous stages are complete. 

 

Implementation 

Oracle Virtual Machine Platform The system was configured with two virtual machines (VMs) using 

Virtual Box. With 4 CPU cores, 4 GB of RAM, and 40 GB of storage, each virtual machine will provide enough 

resources for the object identification algorithms. Virtual machines need Internet connectivity before they can 

configure networks. The ability for the two virtual machines to converse and collaborate is of the utmost 

importance. As a last step, provide static IP addresses to these two virtual computers. A host-only adapter and a 

network address translator (NAT) are required for this to operate. Network address translation (NAT) adapters 

enable virtual machines to interact with the internet, as opposed to host-only adapters. In order to connect to the 

Internet using NAT adapters, it is essential to acquire static IP addresses. A host-only adapter is the only means 

of doing this. The "enp0s3" adapter manages internet connectivity and network address translation (NAT), while 

the "enp0s8" adapter allows us to connect more virtual machines to our desktop. Following the configuration of 

the two virtual PCs, all project criteria were met. The 192.168.56.3 and 192.168.56.2 internal IP addresses are 

shared by the virtual machines running the Master and Worker roles, respectively. 
 

 
Figure 6: Network settings 
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 The Master node should be configured with Kubernetes and Docker, along with software plug-ins like 

kubectl and Weave Net. The cluster's orchestration and administration are handled by these nodes. To enable 

sublet, deactivate swap and configure the hostname. To run the object detection service on the server-less 

architecture, create a Poisson arrival model for the user arrival process. Each user job must be delivered 

independently using a Poisson approach. To achieve this, use the Pope () function in Python. This allows child 

programmers to run autonomously from their parent processes. A sub process is used to mimic a user's request, 

and the object detection service is custom-coded to interface with each user's script. The main process's class "sub 

process. Pope ()" is used to for loop over each user's sub process script. The "kubectl exec" command is used to 

run the object detection service in the sub process script. To avoid I/O issues, manually terminate the sub process 

after object identification is complete. The kubectl run command is used to start the container containing the 

service to enable object detection. 

In this YOLO object identification example, the weight is a pre-trained YOLOv5s model, which is 

lightweight due to its speed and object recognition capabilities. Folders containing user photos, arrival rate, 

confidence level, and total users are scriptable parameters. 

 

 
Figure 7: Main process script 

 

 
Figure 8: Sub process script 

 

The experimental control group consists of equal photos to distinguish between them. The confidence 

score cutoff is set at 0.25 from the YOLOv5 object detection algorithm, and the control group is subjected to a 

default threshold of 0.25. The arrival rate is set at 0.2 users/s, which allows the system to take in new users at a 

Poisson rate. This is advantageous for investigating the connection between user load and system availability. The 

control group will conduct three trials with different user groups to evaluate their performance. Two crucial factors 

must be considered when assessing outcomes: prioritizing quality time together and applying queuing theory to 

the problem of system description. Time intervals for the system, object detection, pre-processing, inference, 

results selection, and service are all part of this process. Verifying the accuracy of the findings is the second step 

in assessing an object recognition algorithm. A high-quality object detection result is one that correctly identifies 

most items with minimal false positives. To ensure the server less architecture software works as expected, the 

object detection findings are displayed. Three user-submitted pictures, one with a single image, and 10 user-

submitted images, all of which include multiple images, are selected at random from the coco128 collection. 
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Figure 9: Object detection example 1 for single-image user 

 
Figure 10: Object detection example 2 for single-image user 

 

See below for the results of the control group experiment for this project. All other groups are assessed 

in relation to this control group. With a confidence level of 0.25 and an arrival rate of 0.2 users/second, we utilize 

the same photographs for users of the same class here. During the request generation process, one request stands 

in for every user who logs into the system. It seems that five individuals are using the programmer, since we have 

seen five requests for user type (a). Type (a) has five users, all of whom are single-image users—that is, their 

projects include only a single photo. As the system is now getting logins from three distinct users, we will need 

to generate three requests for the "b" user type. Type (b) has three people who all utilize multiple photographs and 

would want to work with ten images each. For a c-type user, we generate five queries. Three of these people just 

have a single photo, while two of them have a lot. While users 1, 2, and 3 each utilize a single image, two of them 

make extensive use of photos (c). The relationships between user type, request, user, and image are shown visually 

in Figures 5.7 to 5.9. The preceding graphics demonstrate correlations that may be useful for other experimental 

groups as well. 

Here are the results for the control group. The first step is to create a table that categorizes the time results 

according to the user type. Here we shall see mathematical representations of the link between the number of users 

and the length of the service. To clarify, the image is used for timing purposes throughout pre-process, inference, 

NMS, and object detection. People with several images tend to have more efficient use of their time than those 

with only one. We only use one measure for persons with one picture when it comes to profile images. If you're 

utilizing several photos, the tables will show you how long it takes to analyze all 10. User behavior is used to 

determine system and service timeframes instead of visual data. Because of this, averaging system or service time 

is unnecessary. We allot one system time and one service time for each user. These readings are foundational to 

every experiment in this project. 
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Figure 11: Service time and user number of user type (a) in control group 

 

The time data, together with the correlations between service time and user number, may be used to 

extrapolate results for various experimental groups and user categories. A separate analysis is provided for every 

finding. With a little comparison, we can observe that the two scenarios have very similar system and service 

times. There is almost no waiting time in the system since service time makes up the great majority of system 

time—roughly 97% to 99%. Users are catered to instantly upon accessing the system; queues are not necessary. 

That being the case, it can't be that easy to simulate the server less architecture using mathematical models and 

the queue. We identify a strong association between the number of users and the duration of service time available 

to users, even when we maintain the quantity of photos per user constant. To evaluate the correlation between the 

number of users and the amount of time spent on the system, all trials should employ user type (a). When 

comparing the system with various users, user type (a) is ideal since the service time is much shorter and the 

quantity of images per user remains same. When this kind of user finishes using the system, they log out. 

 

II. Conclusion 
This project presents an object detection application using a server-less architecture and a mathematical 

model. The project aims to build practical models of server-less computing architectures by verifying that simple 

models, such as single-server or multi-server queues, can accurately mimic real-world system actions. The project 

involved conducting literature reviews, designing and implementing the system, and testing its functionality. 

Results showed that the number of users significantly affects service availability, making mathematical models 

unsuitable due to the lack of a queue. The study postulated that this server-less architecture may be best described 

by the processor sharing paradigm. The experiment provided a comprehensive description of the application of 

an item identification approach to a server-less architecture, and an analysis of the performance of server-less 

object detection software based on YOLOv5. The project was successful due to these outcomes and 

improvements. However, the virtual machine (VM) has restricted capabilities for processing and memory, which 

directly impacts service latency and speed, which in turn impacts object recognition performance. Large 

organizations often use resource-rich server-less platforms to launch their services, unlike the circumstances in 

this experiment. The testing focused on a single server configuration due to time and material restrictions. Future 

research could explore the possibility of installing multiple servers. User type (c) is related to two types of users: 

those with many photos and those with only one. After appropriate adjustments, the arrival rate will be the same 

for both types of users, or they may use a separate queuing system if their arrival rates differ. 
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