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Abstract 
In the present work our intention is to establish relationship between new types of closed sets namely g*b-closed 

sets (resp.gb-closed) and g*i-closed sets(resp.gi-closed) and g b- closed sets(resp.gb-closed) and g*d-closed 

sets(resp.gd-closed). We also established the independency between the notions g*i-closedness (resp.gi-

closedness) and g*d-closedness (resp.gd-closedness). 
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I. Introduction 
The notion of topological ordered space was first studied by L. Nachbin [9]. A triple (X, τ, ) where X 

is a non-empty set, τ is a topology and ≤ is a partial order on X called as a topological ordered space. A subset A 

of topological ordered space (X, τ, ≤) is said to d(A) where be an increasing set if A i(A) and is a decreasing set 

if A- (A)= [a.→]𝑎𝐴  and d(A)=  [a.←]𝑎𝐴 . The sets [x, →] = {yX / x  y} and [←, x] = (yX / y ≤ x) are 

defined for any xX. The complement of an increasing set is a decreasing set and vice versa. A subsetof a 

topological ordered space (X, τ, ≤) is a balanced set if it is both increasing and decreasing set. 

The study of Increasing closed set, Decreasing closed set and Balanced closed set(briefly i-closed, d-

closed and b-closed) in topological ordered spaces was initialized by M. K. R. S. Veerakumar [12]. The notion 

of generalized closed set (briefly g-closed set) was introduced by N. Levin [7]. Later Bhattacharya and Lahiri 

[7] introduced and studied semi generalized closed sets (briefly sg-closed sets) in topological spaces. Also, 

generalized star closed sets (briefly g-closed sets) were introduced by Veerakumar [13]. In the later years some 

Authors [11] introduced and studied g*i-closed sets, g*d-closed sets and g*b-closed sets in topological ordered 

spaces. 

In the present work, we established that every g*b-closed (resp.gb-closed) set is both g i-closed (resp. 

gi-closed) set and g*d-closed (resp. gd-closed) set. We also provided examples for the independency of the 

notions namely g*i-closedness and g*d-closedness. 

 

II. Preliminaries 
Unless otherwise mentioned, (X. τ) represent non-empty topological space on which no separation axioms are 

assumed. The usual notations, cl(A), int (A) and C(A) denote the closure, the interior of A and the complement 

of A respectively for a subset A. 

We recall the following definitions which are useful in the sequel.  

 

DEFINITION 2.1. A subset A of a topological space (X. τ) is called 

1. a generalized closed set (briefly g-closed [8]) if cl(A)⸦U whenever A⸦U and U is open in (x, τ). The 

compliment of a g-closed is a g-open set. 

2. a g-closed [13] if cl(A) ⸦ U whenever A⸦U and U is g-open in (X,t). 

 

DEFINITION 2.2. [11] In a topological ordered space (X, τ,), a subset A is a g*i-closed (resp. gi-closed) set if 

A is both increasing and g-closed (resp. g-closed) set. 

DEFINITION 2.3. [11] In a topological ordered space (X, τ, ), a subset A is a g'd-closed (resp.gd-closed) set if 

A is both decreasing and g-closed (resp. g-closed) set. 

DEFINITION 2.4. [11] In a topological ordered space (X, τ, ), a subset A is gb-closed (resp. gb-closed) set if A 

is both balanced and g*-closed (resp.g-closed) set. 
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III. SOME APPLICATIONS. 
THEOREM 3.1. Every g b-closed set is a g*i-closed set. 

Proof. Let A be a gb-closed set in the TOS (X, τ, ). Then, A is an increasing set and is a g-closed set. Thus, A 

is a g*i-closed set. 

The converse of the above theorem is not true. This can be seen in the following example. 

EXAMPLE 3.2. Let X = {a, b, c{, τ6={φ. X. {a}, {b}, {a, b}, {a, c}{ and ordering 9=((a, a), (b, b), (c, c), (a, 

c)}. Then, (X, τ6, 9) is a topological ordered space. In this space, the g*i-closed sets are 4, X. (b), (c), (a, c). (b, 

c) and the g b-closed sets are 4, X, (b), (a, c). Then, A (b, c) is a g*i-closed set but it is not a g*b-closed set. 

THEOREM 3.3. Every g b-closed set is a g*d-closed set. 

Proof. Let A be a g*b-closed set in the topological ordered space (X, τ,). Then A is a decreasing set and is a 

g*-closed set. Thus, A is g*d-closed set. 

The converse of the above theorem is not true. This can be seen in the following example. 

EXAMPLE 3.3. Let X = (a, b, c), τ6 = { φ. X. {a}, {b}, {a, b}, {a, c}} and the ordering 10= {(a, a), (b, b), (c, 

c), (b, a), (b, c), (c, a)). Then, (X,τ6,10) is a topological ordered space. In this space the 3*d-closed sets are φ, X. 

(b), (b, c) and the g*b- closed sets are φ, X. Then, A = {b, c) is a g* d-closed set but it is not a g*b-closed set. 

THEOREM 3.4. Every gb-closed set is a gi-closed set. 

Proof. Let A be a gb-closed set in the topological ordered space (X, τ, ≤). Then, A is an increasing set and is a g-

closed set. Thus, A is a gi-closed set. 

The converse of the above theorem is not true. This can be seen in the following example. 

EXAMPLE 3.5. Let X (a, b, c), τ6 ={φ, X. {a}, {b}, {a, b}, {a, c}} and the ordering 9= ((a, a), (b, b), (c, c), (a, 

c)). Then, (X,τ6,9) is a topological ordered space. In this space, the gi-closed sets are φ, X,{b},{c},{a, c},{b, 

c}and the gb-closed sets are φ, X,{b},{a, c}. Then, the subset A = {b, c} is a gi-closed set but it is not a gb-

closed set. 

THEOREM 3.6. Every gb-closed set is a gd-closed set. 

Proof. Let A be a gb-closed set in the topological ordered space (X, τ, ). Then A is a decreasing set and is a g-

closed set. Thus, A is gd-closed set. 

The converse of the above theorem is not true. This can be seen in the following example.  

EXAMPLE 3.7. Let X ={a, b, c}, τ6 = {φ, X. {a}, {b}, {a, b}, {a, c}} and the ordering 10= ((a, a), (b, b), (c. c). 

(b, c), (c, a). (b. a)). Then, (X, τ6, 10) is a topological ordered space. In this space, the gd-closed sets are φ, 

X,{b},{b, c} and the gb-closed sets are φ, X. Then, the subset A= {b, c} is a gd-closed set but it is not a gb-

closed set. 

 

IV. INDEPENDENT NOTIONS 
THEOREM 4.1. The notions g*i-closedness and g*d-closedness are independent.  

Proof. Follows form the following examples. 

EXAMPLE 4.2. Let X={a, b, c}, τ1= {φ, X, {a}, {b}, {a, b}, {a, c}} and the ordering 2= {(a, a), (b, b), (c, c), 

(a, b), (c, b)}. Then, (X, ti, s) is a topological ordered space. In this space the g*i-closed sets are φ, X. {b, c} and 

the g*d-closed sets are φ, X, {c} {a, c}. Then, the subset A (b. c) is a g*i-closed set but it is not a g-d-closed set. 

On the other hand, the subset B-fa. c) is a g*d-closed set but it is not a g*i-closed set. 

THEOREM 4.3. The notions gi-closedness and gd-closedness are independent. Proof. Follows form the 

following examples. 

EXAMPLE 4.4. Let X = {a. b. c}τ1 = {φ, X, {a}, {b}, {a, b}}and the ordering 2= {(a, a), (b, b), (c, e), (a, b), 

(c, b)}. Then, (X,τ1,2) is a topological ordered the gi-closed sets are φ, X,{b. c} and the gd-closed sets are φ, X. 

{c}{a, c}. Then, the subset A = {b, c} is a gi-closed set out it is not a gd-closed set. On the other hand, the 

subset B  = {a, c} is a gd-closed set but not a gi-closed set. 

The following diagram shows the relationships established in the present work. 

Here. A→B means A implies B but not conversely and A ↔ B denote A and B are independentnotions. 

Diagram 
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V. CONCLUSION 

In the present work, we established some relationships between g-closed type independency of the two 

types of closedness. As a further study we will focus on the relationships sets and g-closed type sets in 

topological ordered spaces. We also provided examples for the of semi generalized closed type sets with other 

types of closed sets in topological ordered spaces. 
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