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ABSTRACT The work performed by the Russian mathematician V. P. Ermakov on the invariant that has his 

name was highly referenced in the late seventies when some results were analyzed in different applications of 

physics related to his research, this generated a wide variety of contributions in classical and quantum physics. 

The invariant is related to the nonadiabatic Hannayś angle and Berry’s phase, and more recently, numerical 

investigations with additive and multiplicative noise have been carried out on the Ermakov invariant with the 

purpose of analyzing robustness and behavior. In the present work, stochastic bounds were constructed for the 

variations that occur when we introduce stochastic noise by a Lévy process on the Ermakov invariant, using a 

very important theoretical result found by Doney in 2004. 
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1. INTRODUCTION 

The main idea is to show through a simulation how we can use the theoretical construction of Doney's 

theorem for the construction of the bounds in a physical model of the Ermakov invariant with noise of a Lévy 

process induced in the system that generates the invariant, in this way a pair of stochastic bounds can be 

constructed supporting the analysis of the behavior of the Ermakov system. In this way, we will use the basic 

elements that allow us to establish and adequately resolve such an approach. 

As a necessity to give an adequate explanation to ordinal differential equations involving continuous 

stochastic processes, stochastic calculus was developed, a branch of mathematics whose main orientation is on 

stochastic processes and stochastic differential equations. The application of stochastic calculus in different areas 

of science, and especially in physics, has been increasingly recurrent, supported by the computational advances 

that have been developed and that through efficient algorithms have improved the approximations to reality. 

Theoretical and practical advances in stochastic calculus are increasingly used in various fields such as 

hydrodynamics, cosmology, spectroscopy, quantum optics, and relativity, as the nature of some physical 

phenomena requires this type of knowledge. Nowadays, engineering is even using stochastic calculus to generate 

noise in some processes with discrete or continuous distributions.  These types of distributions, discrete and 

continuous, were related in the 1930s to the generalization of the French mathematician Paul Lévy [1] about the 

work of Norbert Wiener establishing the development of Lévy processes, named in his honor, which are stochastic 

processes with stationary and independent increments, and continuous in the probabilistic sense.  thus, some Lévy 

processes are compound Poisson processes, Brownian motion, jumping diffusion processes, and stable processes, 

for a rigorous query see Barndorff-Nielsen [2]. Lévy processes are important in the areas of finance, economics 

and recently in applications in physics [3]. Lévy processes have important properties and at first his theory was 

closely related to the theory of random walks [4] and [5], thus we find that R.A. Doney [6] demonstrated a very 

interesting theoretical result which states that an arbitrary Lévy process can be bounded by two random walks 

with identical distributions but different starting points.  Through Wiener-Hopf factorization, this result is very 

important since it can be used in the Ermakov invariant with multiplicative noise and obtain a stochastic bound, 

which is the goal.  

As a first approach to obtaining Ermakov invariants, there are several ways to obtain it Gupta [7] and we 

work with the method that Korsch [8] and Kaushal and Korsch [9] used to construct the invariants of a variety of 

time-dependent systems. 

The theoretical elements that give mathematical support to the simulations built under the hypothesis 

that the Ermakov invariant does exist and can be affected by a Lévy process that allows the construction of a 

stochastic bound that does not depend on the values of the time partition in intervals are established. The document 
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contains the basic elements that involve mathematical, physical, probabilistic, and related stochastic process 

aspects to support its implementation, for a greater depth in the topics use the established references. 
 

II. THEORY AND METHODS 
2.1 Structure constants in the Lie Algebra 

The Ermakov invariant can be obtained using several methods, and one of them is the one related to Lie 

algebras.  In 1873, Sophus Lie [10] laid the foundations of Lie's theory by studying the properties of solutions to 

systems of differential equations and introducing invariants into analysis and differential geometry. Lie showed 

that the set of continuous transformations, although not globally closed, forms a closed group for composition. 

This means that, to each group of transformations, we can associate a family of infinitesimal transformations, 

which contains the information and is associated with Lie algebra, i.e., by considering a family of continuous 

transformations with 𝑓𝑖(𝑥1, . . . , 𝑥𝑛; 𝑎1
0, . . . , 𝑎𝑘

0) for each 𝑓𝑖 locally defined and depending on k parameters, and a 

family of continuous transformations with 𝑥𝑖
′ = 𝑓𝑖(𝑥1, . . . , 𝑥𝑛; 𝑎1, . . . , 𝑎𝑘)   1 ≤ 𝑖 ≤ 𝑛, taking into account the first 

order in a Taylor development for each 𝑓𝑖 : 

𝑓𝑖(𝑥1, . . . , 𝑥𝑛; 𝑎1
0, . . . , 𝑎𝑘

0 + 𝑧𝑘) = 𝑥𝑖 + ∑ 𝑧𝑗

𝑘

𝑗=1

𝑋𝑗𝑖(𝑥1, . . , 𝑥𝑛)+. . .                                                                                      (1) 

results in a transformation that moves points to infinitely small distances : 

𝑑𝑥𝑖 = (∑ 𝑧𝑗

𝑘

𝑗=1

𝑋𝑗𝑖(𝑥1, . . . , 𝑥𝑛)) 𝑑𝑡                                                                                                                                       (2)  

In addition, it should be noted that during system integration : 
𝑑𝜁1

∑ 𝑧𝑗
𝑘
𝑗=1 𝑋𝑗1(𝜁1 , . . . , 𝜁𝑛)

=. . . =
𝑑𝜁𝑛

∑ 𝑧𝑗
𝑘
𝑗=1 𝑋𝑗𝑛(𝜁1, . . . , 𝜁𝑛)

= 𝑑𝑡                                                                                             (3) 

For each (𝑧1, . . . , 𝑧𝑘), you get a subgroup of the set of transformations, consisting of a group with a parameter : 

𝑡 → 𝑥𝑖
′ = 𝑔𝑖(𝑥1, . . . , 𝑥𝑛 , 𝑧1, . . . , 𝑧𝑘 , 𝑡)                                                                                                                                     (4) 

where each  

𝑥𝑖 = 𝑔𝑖(𝑥1, . . . , 𝑥𝑛, 𝑧1, . . . , 𝑧𝑘 , 0)                                                                                                                                             (5) 
for all 𝑖. By reviewing the second-order term in the Taylor development of the functional 𝑔𝑖 as a function of t, 
the following relationships are obtained: 

∑ (𝑋ℎ𝑚(𝑥)
𝜕𝑋𝑗𝑖

𝜕𝑥𝑚

− 𝑋𝑗𝑚(𝑥)
𝜕𝑋ℎ𝑖

𝜕𝑥𝑚

)

𝑛

𝑚=1

= ∑ 𝑐𝑙ℎ𝑗

𝑛

𝑙=1

𝑋𝑙𝑖(𝑥)                                                                                                      (6) 

whereby selecting 𝑧𝑗 = 1  and  𝑧ℎ = 0 when 𝑗 ≠ ℎ, Lie gets inphenitesimal transformations that are associated 

with: 

𝐴𝑗𝑓 = ∑ 𝑋𝑗𝑖

𝑛

𝑖=1

(𝑥)
𝜕𝑓

𝜕𝑥𝑖

                                                                                                                                                              (7) 

and rewriting (6) gives a fundamental structure in the vector space generated by the 𝐴𝑗 : 

[𝐴ℎ, 𝐴𝑗] = 𝐴ℎ𝐴𝑗 − 𝐴𝑗𝐴ℎ = ∑ 𝑐𝑙ℎ𝑗

𝑙

𝐴𝑙(𝑥)                                                                                                                           (8) 

where constants 𝑐𝑙ℎ𝑗  are fixed for each continuous set of transformations and are known as structure constants, 

associated with Lie algebra, and which are fundamental in the search for the Ermakov invariant. 

 

2.2 Dynamic algebraic approach 

Let be a dynamical system described by a configuration space of dimension 𝑛, which we denote as 𝑀, at 

a time 𝑡. At each point 𝑞 you can construct a tangent vector space 𝑇𝑞𝑀 that is generated by all vector’s tangent �̇� 

to all possible curves that pass through it, in addition to being able to construct the velocity phase space 𝑇𝑀, 

known as tangent fibering, and where 𝑀 and 𝑇𝑀 are differentiable manifolds. Using the Legendre transform in 

the dual vector space, known as the phase space, we can construct the cotangent vector space 𝑇𝑞
∗ whose elements 

are the moments, and where any function defined in 𝑀𝑇𝑞
∗ is called a dynamic variable. With the construction of 

tangent and cotangent space, it is natural to be able to define an arbitrary tensor on the manifold under study and 

to construct a Lie algebra, which will allow us to find the Ermakov invariant. This algebraic technique [11] 

considers a Hamiltonian associated with the dynamics of the system. In the case of the forced harmonic oscillator, 

we find: 

𝐻(𝑥) =
1

2𝑚
(𝑝2 + 𝑚𝜔2(𝑡)𝑥2)                                                                                                                                              (9) 
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Let be 𝑇𝑛(𝑝, 𝑞) a base of functions in phase space that together with a closed form 2 form a Lie algebra, also 

called dynamic Lie algebra. Writing the Hamiltonian in terms of the functions at the base: 

𝐻 = ∑ ℎ𝑛

𝑛

(𝑡)𝑇𝑛(𝑝, 𝑞)                                                                                                                                                         (10) 

where  

{𝑇𝑖 , 𝑇𝑚} = ∑ 𝐶𝑖𝑚
𝑘

𝐾

𝑇𝑘                                                                                                                                                              (11) 

and 𝐶𝑖𝑚
𝑘  is the structure constant and {. } is the Poisson bracket. The Ermakov invariant can be expressed as a 

combination of functions at the base of Lie dynamic algebra: 

 𝐼 = ∑ 𝜆𝑘

𝑘

(𝑡)𝑇𝑘(𝑝, 𝑞)                                                                                                                                                          (12) 

where 𝜆𝑘(𝑡) are the indeterminate coefficients, and from the concept of the dynamics of the invariant: 
𝑑𝐼

𝑑𝑡
=

𝜕𝐼

𝜕𝑡
+ {𝐼, 𝐻}𝑝𝑞 = 0                                                                                                                                                        (13) 

generating a system of first-order differential equations: 

𝜆𝑘(𝑡) + ∑ [∑ 𝐶𝑛𝑚
𝑘

𝑚

ℎ𝑚(𝑡)]

𝑛

𝜆𝑛(𝑡) = 0                                                                                                                           (14) 

with unknown parameters 𝜆𝑘(𝑡). Selecting a basis 𝑇𝑛(𝑝, 𝑞) so that, through the Poisson brackets, the structure 

constants, and the Hamiltonian we can find the unknown parameters 𝜆𝑘, which allow us to find the Ermakov 

invariant in a unique way: 

𝐼 =
1

2
[
𝑞2

𝜌2
+ (𝑞�̇� − 𝜌�̇�)2]                                                                                                                                                     (15) 

 

2.3 Ermakov systems 

The Ermakov system we consider is a pair of coupled oscillators [12]:  

�̈� + 𝑤(𝑡)𝑥 = 0                                                                                                                                                                        (16) 
and 

�̈� + 𝑤(𝑡)𝜌 =
𝜆

𝜌3
                                                                                                                                                                    (17) 

where (17) is the Milne-Pinney equation with 𝜆 = 1. The system of equations has been studied in the classical 

and quantum form; this system of equations is a special type of Newton type with equation of motion: 

�̈� + 𝛺2(𝑡)𝑥 = 0                                                                                                                                                                      (18) 
where 𝛺(𝑡) is the time-dependent frequency, which can be written a 

𝑥(𝑡) = 𝐶𝜌(𝑡)sin(𝛩𝑇(𝑡) + 𝜙 𝐶                                                                                                                                            (19) 
 and 𝜙 are arbitrary constants. The phases are determined by 

𝛩𝑇(𝑡) = ∫
1

𝜌2(𝑡′)

𝑡

𝑑𝑡′                                                                                                                                                          (20) 

 

with 𝜌(𝑡) the solution of (17). In addition, 𝛩𝑇(𝑡) it is decomposed into a dynamic angle and a geometric angle 

that allow us to analyze the phases of the system: 

 

𝛥𝛩𝑑(𝑡) = ∫ [
1

𝜌2
−

1

2

𝑑

𝑑𝑡′
(�̇�𝜌) + �̇�2]

𝑡

𝑑𝑡′                                                                                                                        (21) 

 

𝛥𝛩𝑔(𝑡) = ∫ [
1

2

𝑑

𝑑𝑡′
(�̇�𝜌) − �̇�2]

𝑡
𝑑𝑡′                                                                                                                                      (22)             

 

These are the necessary elements that have been widely studied in applications in the different branches 

of theoretical physics, and as shown in the work carried out by Cervantes, Espinoza, Gallegos, and Rosu [13], 

[14], [15]. The introduction of stochastic noise shows the forced behavior of the dynamics of the system, in the 

system simulations were carried out on the Ermakov invariant introducing additive and multiplicative stochastic 

noise, to analyze the robustness of the invariant and the behavior of the dynamic, geometric and total phases, it 

was found that the main perturbation effects are produced by additive noise. The simulation used a Brownian 

motion, which is part of the wide variety of Lévy processes.  
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III. STOCHASTIC BOUNDS FOR A LÉVY PROCESS 
Lévy processes began to be studied in 1930, a class of stationary stochastic processes, which is very 

broad since it includes continuous processes (Brownian motion) and discontinuous processes (with jumps), and 

where the behavior of the trajectories depends on the density function; this type of stochastic processes only has 

infinitely divisible density functions associated with them. Important examples of Lévy processes are motion, the 

Poisson process, the composite Poisson process, stable processes, subordinate processes, to mention a few 

[16],[17] and [18]. 

To define a Lévy processes, we assume that (Ω, ℱ, {ℱ}𝑡>0, 𝒫) it is a complete probability space, it is a 

measure of probability defined over the subsets of which belong to the 𝜎-algebra ℱ; which are the measurable 

events of the outcome space. A stochastic process X  can be seen as a map (0, ∞) × Ω to ℝ, and it is established 

that X𝑡  it is continuous on the right with a limit on the left if there exists a  null set N such that if 𝜔 ∉ 𝑁, with 

𝜔 ∈ Ω, then lim
𝑢↓𝑡

 𝑋𝑢(𝑤) = 𝑋𝑡(𝑤) for everything 𝑡 and lim
𝑢↑𝑡

 𝑋𝑢(𝑤) exists for all 𝑡, then given a process that is 

continuous on the right with a limit on the left, we have to: 

X𝑡− = lim
𝑠↑𝑡

 𝑋𝑠 and ∆𝑋𝑡 = 𝑋𝑡 − X𝑡−                                                                                                                                    (23) 

Given a family (ℱ𝑡 , 𝑡 ≥ 0) of 𝜎-algebras of ℱ is called a filtration if ℱ𝑠 ⊆ ℱ𝑡 when s ≤ t. Let 𝑋 = (𝑋(𝑡), 𝑡 ≥ 0) 

be a stochastic process ℝ𝑑  is defined over a probability space (Ω, ℱ, 𝒫), then 𝑋 it is adapted to the filtration 

(ℱ𝑡 , 𝑡 ≥ 0 ) or ℱ𝑡 - adapted if 𝑋(𝑡)  is ℱ𝑡 -measurable for each 𝑡 ≥ 0 . In a formal way, the concept can be 

established. 

 

Definition 1. A process 𝑋 = (𝑋(𝑡), 𝑡 ≥ 0) is a Lévy process if it is adapted to filtration (ℱ𝑡 , 𝑡 ≥ 0) and satisfies 

the following conditions: 

(i) 𝑋(0) = 0 almost certainly 

(ii) Each 𝑋(𝑡) − 𝑋(𝑠) is independent of ℱ𝑠, ∀ 0 ≤ 𝑠 < 𝑡 < ∞ 

(iii) 𝑋 has stationary increments, i.e., of 𝑋(𝑡) − 𝑋(𝑠) it has the same distribution of  𝑋(𝑡 − 𝑠), for each 

0 ≤ 𝑠 < 𝑡 < ∞ 

(iv) 𝑋 It is stochastically continuous for everything 𝛼 > 0 and for everything 𝑠 ≥ 0 

lim
𝑡→𝑠

𝑃[|𝑋(𝑡) − 𝑋(𝑠)| > 𝛼] = 0                                                                                    

Under these conditions, each 𝑋 Lévy process has a càdlàg modification and is itself 1 a Lévy process, so for 

practical purposes a Lévy process can always be treated as a càdlàg process. 

The general structure of Lévy processes was gradually developed by De Finetti, Kolmogorov, Lévy and Itô [19], 

to mention some of the most important. An interesting result is the Lévy-Khintchine formula [20] which gives a 

characterization of probability measures infinitely divisible through their characteristic functions. Formally, the 

convolution of two measures of probability, 𝜇𝑖 ∈ Μ1(ℝ𝑑) where Μ1(ℝ𝑑) denotes the set of all Borel measures of 

probability over ℝ𝑑, with 𝑖 = 1, 2: 

(𝜇1 ∗ 𝜇2)(𝐴) = ∫ 1𝐴(𝑥 + 𝑦)
ℝ𝑑

𝜇1(𝑑𝑥) ∗ 𝜇2(𝑑𝑦)                                                                                                             (24) 

where 𝐴 ∈ ℬ(ℝ𝑑). It is also defined (𝜇)∗𝑛
= 𝜇 ∗ … ∗ 𝜇 ( 𝑛 times). Then 𝜇 ∈ Μ1(ℝ𝑑)  is infinitely divisible if 

there is a measure 𝜇
1

𝑛 ∈ Μ1(ℝ𝑑) for which (𝜇
1

𝑛)
∗𝑛

= 𝜇, and the characteristic function of 𝜇 ∈ Μ1(ℝ𝑑) is 

defined as: 

𝜙𝜇(𝑢) = ∫ 𝑒𝑖〈𝑢,𝑦〉

ℝ𝑑
𝜇(𝑑𝑦)                                                                                                                                                    (25) 

where 𝜇 ∈ ℝ𝑑 . Now, let 𝜈  a measure of Borel be definite on ℝ𝑑 ∖ {0} = {𝑥 ∈ ℝ𝑑 , 𝑥 ≠ 0}. So 𝜈  it's a Lévy 

measure if: 

∫ (|𝑦|2 ∧ 1)
ℝ𝑑∖{0}

𝜈(𝑑𝑦) < ∞                                                                                                                                               (26) 

 

 
1 In mathematics, càdlàg (from the French "continue à droite, limit à gauche" 'continuous to the right, limit to the left'), are functions 

defined  on real numbers, or other types of objects  for which there is lateral continuity on the right  and for which it is 

simultaneously assumed that  their limits exist  on the left at all their points.  
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Theorem 1. (Lévy-Khintchine formula). A Borel measure of probability 𝜇 over ℝ𝑑 is infinitely divisible if there 

exists a vector 𝑏 ∈ ℝ𝑑 , a non-negative defined symmetric matrix 𝐴(𝑑x𝑑) and a Lévy measure over ℝ𝑑 ∖ {0} such 

that, for all 𝜇 ∈ ℝ𝑑 the characteristic function of 𝜇 admits representation:  

𝜙𝜇(𝑢) = 𝑒
{𝑖〈𝑏,𝑢〉−

1
2

〈𝑢,𝐴𝑢〉+∫ [𝑒𝑖〈𝑢,𝑦〉−1−𝑖〈𝑢,𝑦〉1�̂�(𝑦)]
ℝ𝑑∖{0} 𝜈(𝑑𝑦)}

                                                                                               (27) 

where �̂�(𝑦) = {𝑦 ∈ ℝ𝑑: 0 < |𝑦| < 1}. 

Conversely, any application of the form (27) is the characteristic function of a measure of probability infinitely 

divisible over ℝ𝑑. The triplet (𝑏, 𝐴, 𝜈) is called the characteristic of 𝜈.  

The relationship between the Lévy-Khintchine formula and Lévy processes is because each of the random 

variables that make up a Lévy process   is infinitely divisible due to the stationarity and independence of the 

increments. In this way, the distribution of a Lévy process is determined by the form that the Lévy-Khintchine 

formula can take. 

Another result of interest is the decomposition of a Lévy process, which states that each Lévy process (X(t), t ≥ 0) 

has the decomposition of the sample path into continuous and jump parts, this result is known as the Lévy–It�̂� 

theorem. 

 

Theorem 2. If 𝑋 it is a Lévy process, then there exists 𝑏 ∈ ℝ𝑑, a Brownian motion Β𝐴 with a covariance matrix 

𝐴 and an independent Poisson random measure 𝑁 on ℝ+𝑥 (ℝ𝑑 − {0}) such that, for each 𝑡 ≥ 0 : 

𝑋(𝑡) = 𝑏𝑡 + Β𝐴(𝑡) + ∫ 𝑥𝑁(𝑡, 𝑑𝑥)
|𝑥|<1

+ ∫ 𝑥𝑁(𝑡, 𝑑𝑥)                                                                                             (28)
|𝑥|≥1

 

Thus, we will consider an Ermakov system with (16) and (17) which has an invariant (15), and the dynamics of 

the geometric and dynamic phases correspond to (21) and (22). Its equivalent stochastic system [21] driven by a 

Lévy process 𝐿𝑡: 

𝑑𝑋𝑡 = 𝑓(𝑡, 𝑋𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑑𝐿𝑡                                                                                                                                         (29)  
𝑋𝑎 = 𝜉                                                                                                                                                                                                
which should be interpreted as the stochastic integral equation: 

𝑋𝑡 = 𝜉 + ∫ 𝑓(𝑠, 𝑋𝑠)𝑑𝑠
𝑡

𝑎
+ ∫ 𝜎(𝑠, 𝑋𝑠)𝑑𝐿(𝑠)

𝑡

𝑎
, 𝑎 ≤ 𝑡 ≤ 𝑏                                                                                              (30)  

The case of the parametric oscillator given by equations (16) and (17) was considered, as well as its stochastic 

matrix formulation: 

𝑑𝑋𝑡 = (
𝑑𝑥
𝑑�̇�

) , 𝑓(𝑡, 𝑋𝑡) = (
�̇�

−𝛺2(𝑡)𝑥
) , 𝜎(𝑡, 𝑋𝑡) = (

0
−𝛼𝛺(𝑡)𝜌𝑚)                                                                                (31)  

𝑑𝜌𝑡 = (
𝑑𝜌
𝑑�̇�

) , 𝑓(𝑡, 𝜌𝑡) = (

�̇�

−𝛺2(𝑡)𝜌 +
1

𝜌3

) , 𝜎(𝑡, 𝑋𝑡) = (
0

−𝛼𝛺(𝑡)𝜌𝑚)                                                                     (32) 

 

where 𝜆 = 1,  𝛼𝛺 is the amplitude of the noise frequency Øksendal [22], the parameter 𝑚 takes the value of zero 

for additive noise and for the multiplicative case any number greater than unity would be taken, as in Cervantes, 

Espinoza, Gallegos, and Rosu [13], [14], [15]. By intensifying the amplitude of the noise, we can slightly distort 

its shape of the Ermakov invariant. Our job is to construct stochastic boundaries to limit the variation that occurs 

in the invariant by intensifying the noise in the system. Details of the theory and proof of the theorem we will use 

can be found in the work done by Doney [6], we summarize the most important notation and theory for its 

computational implementation. 

Consider ∏{ℜ} > 0 , 𝑋 = (𝑋𝑡 , 𝑡 ≥ 0)  an arbitrary Lévy process and 𝐼 = [−𝜂1, 𝜂2]  a fixed interval 

containing zero, with 𝛥 : = ∏(𝐼𝑐) > 0. Let's do 𝜏0 = 0 and for 𝑛 ≥ 1 we will write 𝜏𝑛 for some time in which 𝐽𝑛, 

which corresponds to the umpteenth jump in 𝑋 which it occurs in 𝐼𝑐. Let's consider �̂� = (�̂�𝑛 , 𝑛 ≥ 0) the random 

walk where �̂�𝑛 = 𝑋(𝜏𝑛) and the random variables  �̂�1, �̂�2, . .. for the steps in �̂� with 𝑒𝑟 = 𝜏𝑟 − 𝜏𝑟−1  and 𝑟 ≥ 1 

where �̂�  is 𝑋  with the jumps eliminated 𝐽1, 𝐽2, . .. ; a Lévy process has been constructed whose measure is 

constrained from ∏ to 𝐼, and �̂� is independent of {(𝐽𝑛, 𝜏𝑛), 𝑛 ≥ 1} and since it has no great jumps, it follows that 

𝐸(𝑒𝜆�̂�𝑡) it is finite for all λ real.  

Therefore, the contribution of ∑ �̃�𝑛
1 (𝑒𝑟) to �̂�𝑛 can be easily estimated, and for many purposes  �̂�𝑟  it can 

be replaced by 𝐽𝑟 + 𝜇 where 𝜇 = 𝐸�̃�(𝜏1). To control the deviation 𝑋 of �̂�, it is natural to use stochastic limits. The 

most natural way to build stochastic bonds is to use the supreme and the infimum, i.e., where each sequence �̃�𝑛 

and 𝑖̃𝑛 are independent of �̂�𝑛. But this type of approach has some complications depending on each nth iteration, 

as detailed in the work carried out by Doney [6], in which he showed that there is an alternative way in which the 

first term �̃�0 does not depend on each nth term. We should note that for each 𝑛 fixed, (�̂�𝑛 , �̃�𝑛) and (𝑆𝑛
(+)

, �̃�0)  

they have the same distribution, but �̃�0 , as mentioned, does not depend on 𝑛 and 𝑆𝑛
(+)

are random walks as 

described in the theorem. Let be: 
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𝐼𝑛 ≔ Inf
𝜏𝑛≤𝑡≤𝜏𝑛+1

𝑋𝑡                                                                                                                                                                    (33) 

𝑀𝑛: = Sup
𝜏𝑛≤𝑡≤𝜏𝑛+1

𝑋𝑡                                                                                                                                                                  (34) 

where 

𝐼𝑛 = �̂�𝑛 + 𝑖�̃�,   𝑀𝑛 = �̂�𝑛 + �̃�𝑛                                                                                                                                             (35) 

and 

�̃�𝑛: = Sup
0≤𝑠<𝑒𝑛+1

{�̃�(𝜏𝑛 + 𝑠) − �̃�(𝜏𝑛)},   𝑛 ≥ 1                                                                                                                 (36) 

𝑖̃𝑛: = Inf
0≤𝑠<𝑒𝑛+1

{�̃�(𝜏𝑛 + 𝑠) − �̃�(𝜏𝑛)} , 𝑛 ≥ 1                                                                                                              (37) 

 

Theorem 3. Using the above notation we have, for any η1, η2 > 0 fixed with Δ : = ∏(Ic) > 0, In = S(−)
n +

ĩ0,   Mn = S(+)
n + m̃0 ,   n ≥ 0  where both the processes  S+ = (S(+)

n, n ≥ 0) and S(−) = (S(−)
n, n ≥ 0)  are 

random walks with the same distribution as Ŝ.  In addition, S(+) and m̃0 they are independent, so like also it is 

S(−) y ĩ0. 

Notice that, for each 𝑛 fixed, the pairs (�̂�𝑛 , �̃�𝑛) and (S(+) + m̃0) have the same joint law; however, the latter 

representation has the great advantage that the term m̃0 does not depend on 𝑛. 

The construction of stochastic limits to a Lévy process was to control these variations and to have a better 

understanding of the phenomenon, taking it to the practical field helps us to analyze the behavior produced by the 

effect of noise in a proposed system. 

 

IV. RESULTS. 
The presence of noise in nonlinear dynamical systems is of great interest in scientific research since most 

phenomena evolve in the presence of stochastic noise of different types, motivating the idea of being able to 

determine the balance between deterministic forces and stochastic factors, in particular, for our case it is important 

to take into account that models that use Brownian motion have limitations such as the inability to capture jumps,  

stochastic volatility, and so on. In recent research, there are several types of stochastic noises that we could use to 

induce in the system, all important, however, we decided to use the generalized hyperbolic distribution that was 

introduced by Barndorff-Nielsen [23]. The generalized hyperbolic distribution is (𝐻𝐺) has five parameters, i.e., 

𝑋~𝐻𝐺(𝜆, 𝛼, 𝛽, 𝛿, 𝜇) where 𝜇  is a localization parameter, 𝛿  scale parameter, 𝛼  shape parameter, 𝛽  asymmetry 

parameter, 𝜆 influences kurtosis and characterizes the classification of 𝐻𝐺. The probability density function of 

the Generalized Hyperbolic Distribution is: 

𝜌𝐻𝐺(𝑥; 𝜆, 𝛼, 𝛽, 𝛿, 𝜇) = 𝑎(𝜆, 𝛼, 𝛽, 𝛿, 𝜇)(𝛿2 + (𝑥 − 𝜇)2)
1

2
𝜆−

1

4 ⋅ 𝐵(𝜆 − 0.5, 𝛼√𝛿2 + 𝑥2 − 2𝑥𝜇 + 𝜇2)𝑒𝛽(𝑥−𝜇) (38) 

where 𝑎(𝜆, 𝛼, 𝛽, 𝛿, 𝜇) =
(𝛼2−𝛽2)

1
2𝜆

√2𝜋𝛼
𝜆−

1
2𝛿𝜆𝐵(𝜆,𝛿√𝛼2−𝛽2)

    and 𝐵(𝜆,⋅) y denotes the modified third-type Bessel function 

with index 𝜆. When selecting 𝜆 =
1

2
 we have an important subclass due to its wide application in different areas 

of finance and physics that is known as the Gaussian Inverse Normal Distribution (𝑁𝐼𝐺) , the generalized 

hyperbolic process, which we denote as  𝐿𝑡, is a Lévy process such that 𝐿1~𝐻𝐺(𝜆, 𝛼, 𝛽, 𝛿, 𝜇) and has no diffusion 

component, therefore, it is a pure jump process (they do not have a continuous Brownian component),  with 

infinite variation. The Lévy process is introduced by Barndorff-Nielsen [24] and its distribution function is: 

𝜌𝑁𝐼𝐺(𝑥; 𝛼, 𝛽, 𝛿, 𝜇) =
𝛿𝛼

𝜋
𝑒𝛿√𝛿2−𝛽2−𝛽(𝑥−𝜇) 𝐾1(𝛼𝑔(𝑥−𝜇))

𝑔(𝑥−𝜇)
                                                 (39) 

where 𝑥, 𝜇 ∈ ℝ, 𝛿 > 0, 0 ≤ |𝛽| ≤ 𝛼, 𝑔(𝑥) = √𝛿2 + 𝑥2, and 𝐾1 is a modified Bessel function of the third type see 

Barndorff-Nielsen and Blaesild [25]. The normal inverse Gaussian Lévy process 𝑋𝑡 is defined as a Lévy process 

with stationary independent increments, where the increments are distributed according to the normal inverse 

Gaussian distribution and for a Lévy process the characteristic function can be represented as: 

𝐸(𝑒𝑖𝑢𝑋𝑡) = 𝑒𝑡𝜓(𝑢)                                                                                                                                                                  (40) 

The Lévy -Khintchine formula for the function in case of the NIG Lévy process is given by:  

𝜓(𝑢) = ∫ (1 − 𝑒𝑖𝑢𝑥)𝑓(𝑥; 𝛼, 𝛽, 𝛿)𝑑𝑥 + ∫ (1 − 𝑒𝑖𝑢𝑥 − 𝑖𝑢𝑥)𝑓(𝑥; 𝛼, 𝛽, 𝛿)𝑑𝑥
|𝑥|<1|𝑥|≥1

+ 𝑖𝑢𝛾                                    (41) 

where 𝑓(𝑥; 𝛼, 𝛽, 𝛿)  is given by 𝑓(𝑥; 𝛼, 𝛽, 𝛿) =
𝛼𝛿

𝜋|𝑥|
𝑒(𝛽𝑥)𝐾1(𝛼|𝑥|) , 𝛾 =

2𝛼𝛿

𝜋
∫ sinh (𝛽𝑥)𝐾1(𝛼𝑥)𝑑𝑥

1

0
 and the 

normal inverse Gaussian Lévy process is described by the characteristic triplet (𝛾, 0, 𝜈). Using results from Protter 

[26] we get a representation of 𝑋𝑡 in terms of Poisson processes: 

𝑋𝑡 =  𝛾𝑡 + ∫ 𝑦(𝑁𝑡(𝑑𝑦) − 𝑡𝜈(𝑑𝑦)) + ∫ 𝑦𝑁𝑡(𝑑𝑦)  
|𝑦|≥1|𝑦|<1

                                                                                          (42) 
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where 𝜈(𝑑𝑦) = 𝑓(𝑦; 𝛼, 𝛽, 𝛿)𝑑𝑦. We use the trajectories generated by the probability density function of the 

normal inverse Gaussian, at various time points. Consider a NIG process, which is a Lévy process 𝐿𝑡 and where 

the increments of 𝐿𝑡 are distributed according to the Inverse Gaussian Normal distribution, which contains four 

parameters 𝜇, 𝛿, 𝛼, 𝛽 ∈ ℜ with 𝛿 > 0 and 0 ≤ |𝛽| ≤ 𝛼. In general, in the different simulations 𝛿𝑡 = 𝛿𝑡, 𝜇𝑡 = 𝜇𝑡  

and 𝛾 = √𝛼2 − 𝛽2 .  In the limit case where the variance of the subordinate tends to zero, the NIG process 

coincides with the Brownian motion and the probability density is normal. For other values of variance, the 

probability density function of the Normal Inverse Gaussian has an excess of kurtosis and non-zero asymmetry, 

these excesses allow us to see more clearly the construction of the limits. System (16) and (17) were solved for 

Ω(𝑡) = 2 with the considerations used in Cervantes, Espinoza, Gallegos, and Rosu [13], [14], [15], also in 

Schotens [27].  

The Ermakov invariant was estimated with a value of 0.49988887 and the stochastics bound were constructed as 

a variation of the infimum and the supreme. 

 

 
Fig. 1. Dynamic behavior of the stochastic bounds and the Ermakov invariant with  𝑡 ∈ [0, 𝜋], the gray color 

corresponds to the m = 0 additive noise of amplitude 𝛼Ω = 0.15, lower bound, the magenta color corresponds to 

the amplitude 𝛼Ω = 0.1 and the black color corresponds to the amplitude 𝛼Ω = 0.2 (uppers bound). 

 

V. CONCLUSIONS 
The modeling of systems of stochastic equations is fundamental in pure and applied sciences, especially 

because of the great advances that have been achieved in computational support, allowing simulations previously 

not achieved, with this idea, in this research we have managed to build stochastic coefficients with a simpler 

mathematical structure as are the random walks in function of the infimum and the supremum, in such a way that 

does not depend on the nth term of the partition of the domain, since as shown by Doney that causes some 

behavioral problems when n tends to infinity. Now, the Lévy processes are complex and although they allow to 

generalize the analysis of phenomena with jumps, their mathematical formalization is very rich from the 

mathematical perspective, at present they continue advancing investigations of the application to different areas 

of science both theoretical and applied, and undoubtedly that supports enough in the control of models that are 

simulated through different types of noises, especially the Lévy processes have had important advances and new 

algorithms have been generated to make more efficient the estimation and not to have problems of convergence 

as it is shown in several of the established references. It is a first approximation in the application of the theory to 

a real model that is studied a lot in theoretical physics and that also has its quantum representation, the Ermakov 

invariant, in this case when analyzing the dynamic behavior affecting the system of equations by a stochastic noise 

of a Lévy process, different to the Brownian motion, the observation already found that the dynamic invariant is 

more sensitive to additive noise, as previously observed, is confirmed. 
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