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ABSTRACT: A method of using multiple regression in making forecasts for data which are arranged in a 

sequence, including time-order, is presented here. This method uses dummy variables, which makes it robust. 

The design matrix is obtained by a cumulative coding procedure which enables it overcome the setback of equal 

spacing associated with dummy variable regression methods. The use of direct effects obtained by the method of 

path analysis makes the whole procedure unique. 
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I. INTRODUCTION 
Usually, multiple regression models are used for estimating the contributions or effects of independent variables 

on a dependent variable. A first order multiple regression model with two independent variables X1 and X2 is in 

the form [1]. 

             

            Yi=β0+β1Xi1+β2Xi2+εi                                                                                                                                                                                                    (1) 

 

This model is linear in the parameters and linear in the independent variables. Yi denotes the response in the ith 

trial and Xi1 and Xi2 are the values of the two independent variables in the ith trial. The parameters of the model 

are β0, β1 and β2, and the error term is εi. 

Assuming that E(εi) = 0, the regression function for (1) is                            

 

              E(Y)=β0+β1X1+β2X2                                                                                                                              (2) 

 

Note that the regression function (2) is a plane and not a line. 

The parameter β0 is the y intercept of the regression plane. 

 

The parameter β1 indicates the change in the mean response per unit increase in X1 when X2 is held constant. 

Likewise, β2 indicates the change in the mean response per unit increase in X2 when X1 is held constant. 

When there are more than two independent variables, say p-1 independent variables X1, . . . ,  Xp-1, the first order 

model  is  

 

               Yi=β0+β1Xi1+β2Xi2+...+βp-1Xi,p-1+εi                                                                                                                     (3) 

 

Assuming that E(εi) = 0, the response function for (3) is  

 

                 E(Y)=β0+β1X1+β2X2+...+βP-1Xp-1                                                                                                      (4) 

 

The response function (4) is a hyper plane, which is a plane in more than two dimensions. It is no longer 

possible to picture this response surface as we were able to do with (2), which is a plane in 3 dimensions. 

Multiple regression is one of the most widely used of all statistical tools. A regression model for which the 

response surface is a plane can be used either in its own right when it is appropriate, or as an approximation to a 

more complex response surface. Many complex response surfaces are often approximated well by a plane for 

limited ranges of the independent variables [1]. 

 

The use of multiple regression is largely limited to the problem of estimating the contributions, or estimation of 

the effects of the independent variables on the dependent variable. Forecasting values of the dependent variable 

using multiple regression models is often of interest to researchers, though forecasting is not a common feature 

of existing regression methods. The problem is that independent variables are not available for the period onto 

which forecasts are sought. 
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A method for carrying out forecasts of this sort is proposed here and will be applicable when data is in at least 

ordinal form.  

II.   PROPOSED METHOD 
To achieve the objective of this paper, which is to develop a multiple regression forecasting model, we 

propose the use of dummy variable multiple regression modeling methods [2]. Specifically a 0,1 dummy 

variable coding system would be used in such a way that each category or level of a parent independent variable 

in a regression model is represented by a pattern of 1‟s and 0‟s, forming a dummy variable set. In order to avoid 

linear dependence among the dummy variables of a parent variable each parent variable is always represented 

by one dummy variable less than the number of its categories [3][1]. Thus if a given parent variable Z has z 

categories or levels, the corresponding design matrix X will be represented ordinally by z-1 column vectors of 

ordinally coded dummy variables, xd, of 1‟s and 0‟s (for d=1,2,…,z-1). The 1‟s and 0‟s in each xd  are cumulative 

if the values of the level of the parent variable it represented are arranged together.   

Specifically, the pth level (p = 1, 2, … z) of the z levels of a parent variable Z will be represented by d ordinally 

coded column vectors of 1‟s and 0‟s for d = 1, 2, … z-1 that is:  

 

Xid=                                                 (5) 

 

Then if, but without loss of generality, the observations in each level of Z are arranged all together, then the n x 

(z-1) design matrix X representing Z will consist of a set of z-1 cumulatively coded column vectors xd of 1‟s and 

0‟s of the form 

 

Equation (6) is a prototype of ordinally coded design matrix X with z-1 cumulatively coded column vectors xd  

 

of 1‟s and 0‟s representing the z levels of the parent variable Z. Note that the first n1 elements of the first column 

x1 of X representing the first level of Z are 0‟s while the remaining n-n1 are all 1‟s. The firstn1 + n2 elements of 
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x2 are 0‟s, while the remaining n-(n1 + n2) elements are all 1‟s and so on until finally all the elements of xz-1 are 

all 0‟s except the last nz elements which are all 1‟s.  

Note that all the observations in the first level (level 1) of Z are all coded 0 in all the columns of the design 

matrix X while observations in the last level (level z) of Z are all coded 1‟s in X.  

Note also that Z may be any set of parent independent variables such as A, B, C etc with levels a, b, c, etc 

respectively. An ordinal dummy variable multiple regression model of yi on the xij‟s may be expressed as  

 

 iCciCcAaiAaAiAAiAi eXXXXy   ;1,;1;1,;1;2;2;1;10 ................ 
                           (7) 

 

where j‟s are partial regression coefficients and ei are error terms uncorrelated with xij‟s, with E(ei) = 0; A has 

„a‟ levels, B has „b‟ levels … C has „c‟ levels, etc.  

Note that the expected value of yi is  

 

CciCcAaiAaAiAAiAi XXXXyE ;1,;1;1,;1;2;2;1;10 ..................)(                              (8) 

 

Equation 7 may alternatively be expressed in its matrix form as  

 

eXy  
                                                                                (9) 

 

where y is an nx1 column vector of outcome values; X is an nxr cumulatively coded design matrix of 1‟s and 

0‟s; β is an rx1 column vector of regression coefficient and e is an nx1 column vector of error terms 

uncorrelated with X with E(e)=0 where r is the rank of the design matrix X.  

Use of the method of least squares with either equation (7) or (9) yields an unbiased estimator of β as  

                            
  yXXXb ''

1
                                                                        (10) 

where   1
'


XX is the matrix inverse of  XX ' , the resulting predicted regression model is  

                  
bXy ˆ

                                                                              (11) 

 

The following analysis of variance (ANOVA) table (Table1), enables the testing of the adequacy of Equations 

(7) or (9) using the F test.  

 

Table 1: Analysis of Variance (ANOVA) Table for Equation (9) 

Source of 

Variation 

Sum of Squares (SS) Degrees of 

Freedom (DF) 

Mean Sum of 

Squares (MS) 

F. Ratio 

Regression  2'' ynyxbSSR   1r  

1


r

SSR
MSR

 

 

MSE

MSR
F 

 Error yxbyySSE '''   rn   

rn

SSE
MSE




 

Total  2' ynyySST   1n  
  

 

The null hypothesis to be tested for the adequacy of the regression model (Equation 7 or 9) is  

    
0:0: 10   HversusH

                                                                        (12) 

 

H0 is tested using the test statistic F = 
MSR

MSE
 

This has an F distribution with r-1 and n-r degrees of freedom. H0 is rejected at the  level of significance if  

        

  rnrFF  ,1;1                                                               (13) 

 

Otherwise we do not reject Ho, where F(1-, r-1, n-r) is the critical value of the F distribution with r-1 and n-r 

degrees of freedom for a specified  level.  
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If H0 is rejected indicating that not all j‟s are equal to zero, then some other hypotheses concerning j‟s may be 

tested.  

 

Note that k; is interpreted in ordinal dummy variable regression model as the amount by which the 

dependent variable y on the average changes for every unit increase in xk compared with xk-1 or one unit 

decrease in xk relative to xk+1 when all other independent variables in the model are held constant. That is, k 

measures the amount by which on the average the dependent variable y increases or decreases for every unit 

change in xK compared with a corresponding unit change in either xk-1 or xk+1 respectively when all other 

independent variables in the model are held constant.  

 

Research interest may be in comparing the differential effects of any two ordinal dummy variables of a 

parent independent variable on the dependent variable. For example one may be interested in testing the null 

hypothesis   

                      

AjAlAjAl HversusH ;;1;;0 ::  
                                                                       (14) 

 

Where the d‟s are estimated from Equation (10) as bd‟s for l = 1, 2 … a-1; j = 1, 2 … a-1; l  j. 

The null hypothesis of Equation (14) may be tested using the test statistic  

    MSECXXC
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
                                         (15) 

 

where C  is an r row vector of the form (0, 0,…,1,0,…-1,0,…0)  

Where 1 and -1 correspond to the positions of βl;A and βj;A respectively in the rx1 column vector b and all other 

elements of C are 0. H0 is rejected at the  level of significance if  

                        rntt  ;1                                                                                                                       (16) 

Otherwise we do not reject H0, where  rnt  ;1   is the critical value of the t distribution with n-r degrees of 

freedom for a specified  level.  

 

In general several other hypotheses may be tested. For example one may be interested in comparing the effects 

of the ith level of factor A, say and the jth level of factor C say or of some combinations of some levels of 

several factors. Thus interest may be in testing.   

              CjAlCjAl HversusH ;;1;;0 ::                                                                            (17) 

 

Using the test statistic 

               

  
    MSECXXC

bC
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
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


                                               (18) 

 

where  C is a row vector as in Equation (15) except that 1 and -1 now occurs at the positions corresponding to 

the ith level of factor A and jth level of factor C in b. H0 is rejected as in Equation (16). 

 

Further interest may also be in estimating the total or overall effect of a given parent independent variable 

through the effects of its representative ordinal dummy variables on the dependent variable. To do this it should 

be noted that any parent variable is completely determined by its set of representative ordinal dummy variables. 

 

 

III. ESTIMATION OF EFFECTS 
For the purposes of parameter estimation in dummy variable regression, the dummy variables of a 

parent independent variable are treated as intermediate (independent) variables between the parent variable and 

the dependent variable of interest [4][5]. Each dummy variable of the parent independent variable is then treated 

as a separate variable determined by its parent variable and determining the specified dependent variable. 

Therefore in developing an expression for the regression effect of a parent independent variable on a specified 
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dependent variable use is made of the simple effects of the set of dummy variables representing that parent 

independent variable on the dependent variable. 

Now an equation expressing the determination of a dependent variable by the d-th dummy variable, xd (d=1, 2... 

s-1), of a parent independent variable V with s levels may be written in the form: 

                               

  

  exxy x

dd 


                                                                                                  (19) 

In equation (19) y is an  n-column vector representing the dependent variable, xd is an n-column vector  denoting 

the d-th set of ordinal dummy variables representing the parent independent variable V, for d=1,2,……,s-1. 

x
(x)

 is an n x (s-2) matrix of full column rank, s-2, representing  all the other s-2 ordinal dummy variables for V.  

d is the regression effects of xd   on y, and 
+
 is an s-2 column vector of the regression effects of x

(x)
 on y. e is 

an n-column vector of uncorrelated error terms. Note that equation (3.16) may be expressed more compactly in 

the form 

                 
eXy  

                   
                                                                                (20) 

 

Where   X = (xd, x
(x)

) and 

                          

                                 yXXX ''
1

                                          (21) 

  

Without loss of generality, take d as the first component of . In ordinal dummy variable regression, d is a 

regression coefficient measuring the net effect of the d-th level of a parent independent variable, V, on a 

dependent variable, y, relative to the effect of the immediately succeeding level ((d-1) level) of V, after 

adjustments have been made for the effects of other variables in the regression model. 

Now to estimate the direct effect [6], 1960[2], Bv, of a given parent independent variable V on a dependent 

variable y, the dummies of the parent independent variable V are treated as intermediate variables between V 

and y. Then, following the method of path analysis, [6][4][2], Bv is obtained as a weighted sum of d given as  

                         







1

1

s

d

ddvB                                                                           (22) 

 

where the weights d is the simple regression coefficient of xd on V which is subject to the constraint  

                              







1

1

1
s

d

d                                                                        (23) 

 

 

The difference between the total effect, bv, namely the simple regression coefficient of y on the parent 

independent variable V, and Bv, the effect of V on y through the variables xd, is the indirect effect of V on y 

[6][2]. 

 

IV. FORECASTING 
Conventionally, forecasting using regression methods where the parent independent variables are 

categorical and represented by codes is carried out using the method of least squares. In this case, the value of 

the dependent variable to be predicted or forecasted, for given values of the independent variables, is obtained 

by inserting the values of these independent variables represented by codes in the fitted regression model, where 

the independent variable is coded  from 1 to n (n being the number of observations in ascending order of time, 

or the orthogonal coding system where the earliest in time is coded –( ), increasing arithmetically by 1 unit 

until the latest in time is coded ( , if the number of observations are odd, example is t = -3,-2,-1,0,1,2,3 if 

there are 7 observations, alternatively the codes will be  -(n-1), -(n-3), -(n-5), … starting with the earliest in time 

to the latest in time, if the number of observations is even. 

These codes are used as independent variables against the real dependent variable, y. This method suffers from 

the restriction of equal spacing of levels in the codes using normal dummy variable regression models plus the 

additional difficulty of interpreting the regression coefficients generated.  
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In cases where the parent independent variables are each represented by a set of dummy variables of 

1‟s and 0‟s, the use of direct effects as the forecast model coefficients is advocated. These uses of direct effects 

as coefficient has taken care of the requirement and constraints of equal spacing and are interpretable, hence 

more useful for practical purposes. 

 

The multiple regression model expressing the dependence or relationship between the dependent 

variable „Y‟ and the parent independent variables A, B, C…etc represented by their respective sets of ordinal 

dummy variables is 

 

Yi = β0+β1;AXi1;A +  β2;AXi2;A + …+ βa-1;AXi,a-1;A + β1;BXi1;B  + β2;BXi2;B  + … + βb-1;B Xib-1;B + β1;CXi1;C + β2;CXi2;C +   

 

…+βc-1;CXic-1;C + …+ ei                                                                                                                                                                                                                  (24)                                                                                                                         

 

Where Xij;A is the ordinal dummy variable representing the jth level of factor A with regression effect βj;A, 

j=1,2,…a-1; Xij;B is the ordinal dummy variable representing the jth level of factor B with regression effect βj;B, 

j=1,2,…,b-1; Xij;C is the ordinal dummy variable representing the jth level of factor C with regression effect Β j;C; 

j=1,2,…c-1; etc, and ei is the error term uncorrelated with the Xij‟s and E(ei) = 0 for i=1,2,…n. 

 

The estimated value of equation (24) is 

 

E(yi)=β0+ 𝛽𝑗 ;𝐴
𝑎−1
𝑗=1 E(Xij;A)+ 𝛽𝑗 ;𝐵

𝑏−1
𝑗=1 E(Xij;B)+ β

j;C
c−1
j=1 E(𝑋𝑖𝑗 ;𝐶)+...                                                                                                     (25) 

 

Now define the regression effect of any parent independent variable A say, on the dependent variable „y‟ 

through the effects of the set of ordinal dummy variables representing that parent independent variable A. We 

take the partial derivative of equation (25), the expected value of „y‟ with respect to A obtaining 

 
𝑑𝐸(𝑦𝑖 )

𝑑𝐴
 =  𝛽𝑗 ;𝐴

𝑎−1
𝑗=1  

𝑑𝐸(𝑋𝑖𝑗 ;𝐴 )

𝑑𝐴   +  β
j;B

b−1
j=1

dE (Xij ;B )

dA   +  β
j;C

c−1
j=1  

dE (Xij ;C )

dA    +  . . . 

 

Where 
dE (Xij ;A )

dA
 = αj;A  is the simple regression coefficient of Xij;A regressing on the parent independent variable, 

A ,with  ∝j;A
a−1
j−1  = 1 (Oyeka,1993) and 

dE (Xij ;Z )

dA
 = 0 , for all parent independent variables Z ≠ A; Z = B,C, . . . 

so that  

 
dE (yi )

dA
 =  β

j;A
a−1
j=1 ∝J;A  + 0 

 

Hence the partial regression effect of the parent independent variable of factor A through the effects of its 

representative set of ordinal dummy variables on the dependent variable „y‟ is 

        β
y;A

= ∝j;A 
a−1
j=1 β

j;A
                                                                                                                                     (26) 

Whose sample estimate is 

 

                                 ∝j;A
a−1
j=1 bj;A                                                                                                                       (27) 

 

where  bj;A  is the sample estimate of the partial regression coefficients   β
j;A

,  j= 1, 2, … , a-1. 

Estimates of the partial effects of other parent independent variables in the model are similarly obtained.  

 

V. ILLUSTRATIVE EXAMPLE 
Mean monthly maximum temperature data, in degree centigrade, was collected by a research centre for 

five consecutive years (2007-2011) as shown in table 2 below. 

 

Table 2: Mean Monthly Maximum Temperature (
o
C) 

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

2007 33 35 34 34 32 31 29 30 31 31 33 32 

2008 33 33 34 33 31 31 30 29 29 31 31 32 

2009 34 35 35 32 32 30 30 29 30 30 31 32 

2010 31 35 34 32 32 30 29 29 30 31 32 33 

2011 33 34 34 33 33 31 30 29 30 31 32 34 
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Applying equation 5 to obtain the design matrix, note must be taken that two independent variables are 

involved here, they are „year‟ represented in the dummy design matrix as Xid , i=1,2,3,4 and „months‟ , 

represented in the dummy design matrix as Mid  , i=1,2,…,11. Note also that the design matrix will be obtained 

using the cumulative coding system proposed in equation 5 for both the years and the months respectively. 

 

Table 3 below shows the cumulatively coded design matrix for the year and month variables. Note that one year 

(2011) was dropped. Note also that one month (Dec) was dropped. Pm and Px are the parent independent 

variables for month and year respectively. 

 

Table3: Cummulatively coded design matrix for the maximum temperature data 

Pm Px X11 X12 X13 X14 M11 M12 M13 M14 M15 M16 M17 M18 M19 M1,10 M1,1

1 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

4 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 

5 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

6 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

7 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 

8 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 

9 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 

10 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 

11 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 

12 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

3 2 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

4 2 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 

5 2 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

6 2 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 

7 2 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 

8 2 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 

9 2 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 

10 2 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 

11 2 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 

12 3 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 3 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

3 3 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 

4 3 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 

5 3 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 

6 3 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 

7 3 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 

8 3 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 

9 3 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 

10 3 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 

11 3 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 

12 3 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 

1 4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 4 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

3 4 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 

4 4 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 

5 4 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 

6 4 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 

7 4 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 
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8 4 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 

9 4 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 

10 4 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 

11 4 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 

12 4 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

1 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

2 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

3 5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

4 5 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

5 5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

6 5 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

7 5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

8 5 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

9 5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

10 5 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

11 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

12 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

For the direct effects, the dummy variables (xid ; d=1, 2, 3, 4 ) as independent variables, are each regressed on px, 
the parent independent variable for year, using the method of least squares. Similarly, the dummy variables 

(mid;d=1, . . ,11 ) as independent variables, are each regressed on pm, the parent independent variable for month, 

by the same method of least squares. Table 4 below show the outputs of these regressions. 

 

Table 4: Simple Regression Coefficients 

 

i MODEL COEFFICIENT(αi) 

1 

2 

3 

4 

X11 on px 

X12 on px 

X13 on px 

X14  on px 

0.200 

0.300 

0.300 

0.200 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

M11 on pm 

M12 on pm 

M13 on pm 

M14 on pm 

M15 on pm 

M16 on pm 

M17 on pm 

M18 on pm 

M19 on pm 

M1,10 on pm 

M1,11 on pm 

0.038 

0.070 

0.094 

0.112 

0.122 

0.126 

0.122 

0.114 

0.098 

0.070 

0.038 

 

    

Note that the sums of the regression coefficients for each of the variables (year and month) sum up to 1. Recall 

that the direct effects for the years, Bx , is obtained as Bx =  ∝i 
4
i=1 βi where βi are the regression coefficients 

obtained from regressing the maximum temperature data (as dependent variable) on the cumulatively coded 

dummy variable design matrix (table 3 without px and pm) and αi are the simple regression coefficients related to 

the years x11, x12, x13, x14 respectively as shown in table 4 above. Bm =  ∝i β
i

11
1  is  obtained similarly for months 

where αi are the simple regression coefficients related to the months m11, m12, . . . , m1,11 respectively as shown 

in table 4. 

 

Table 5 below show the coefficients (β) obtained from the regression. 
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Table 5: Regression Coefficients from the regression of maximum temperature data  

on the cumulatively coded dummy variable design matrix 

 

 

For the regression above, we have R
2
 =0.877 and MSE = 10.979 with p-value=0.000, hence a significant 

multiple regression exist. 

 

 

Direct Effects and Test of Significance 

 

The direct effect for year, Bx= ∝i 
4
i=1 βi, is obtained as 3.3x10

-3
.                                                                                                                       

  

 

Similarly, the direct effect for month is  

 

 Bm = ∝i β
i

11
i=1 , is -0.257. 

 

Testing significance of the direct effect for the years Bx , the t- statistic where  

 

tX = 
Bx

√var (Bx)     

 

follows the student t distribution with n-p degrees of freedom, p is the number of parameters in the model. 

 

Var(BX) = Var(α'βi) = αi'Var(βi)αi  for i= 1,2,3,4 

 

and  Var(βi) = MSE(Xd' Xd)
-1

        [1] 

 

so Var(Bx)= αi' MSE(Xd' Xd)
-1

αi        i=1,2,3,4 

 

this yields Var(Bx) = 0.167 

 

Hence  

 

tx = 
0.0033

√0.167
  = 0.008 

 

For 60 - 4 = 56 degrees of freedom, a p-value of more than 0.746 was observed; this supports the hypothesis of 

no significant direct effect, due to the years, on the regression equation. 

 

Similarly, for a significance test of the direct effect of the months, Bm, on the regression equation 

Var(Bm)  is 0.001 

Hence  

 

i 

 

1 

2 

3 

4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Dummy Variable 
Constant 

X11 

X12 

X13 

X14 

M11 

M12 

M13 

M14 

M15 

M16 

M17 

M18 

M19 

M1,10 

M1,11 

 

Regression Coefficient (βi) 
33.174 

-0.785 

0.368 

-0.167 

0.500 

1.600 

-0.200 

-1.400 

-0.800 

-1.400 

-1.000 

-0.453 

0.853 

0.569 

1.231 

0.800 

p-value 
0.000 

.012 

.223 

.567 

.098 

.001 

.664 

.004 

.088 

.004 

.034 

.358 

.087 

.202 

.008 

.088 
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 tm = 
Bm

√Var (Bm)
   =   

−0.257

√.001
   = -8.031 

 

For n-p which is 60-11 = 49 degrees of freedom, a p-value of less than 0.0005 was observed. This supports a 

significant direct effect due to the months. 

 

Forecasting 

 

The forecast equation for maximum temperature is therefore of the form  

 

                 Ťym=BO+Bxtx i
+Bmtm i   i=1,2…12                                                                                                (28) 

 

Where Bo is the overall mean effect estimated by the constant term obtained as in table 5 (the value here is 

33.174). Bx is the direct effect of year on maximum temperature obtained by the method of path analysis (value 

here is 3.3x10
-3

), this value is not statistically significant hence it will be dropped. Bm is the direct effect of 

months on maximum temperature, also obtained by the method of path analysis (value here is -0.256892), this 

direct effect is statistically significant. 

 

[7] interpreted the path coefficients (the direct effects) thus: given a path diagram as below 

                              

                                                    A ―――― θ = 0.81――――>B 

 

If region A increases by 1 standard deviation from its mean, region B would be expected to increase by 0.81 its 

own standard deviations from its own mean while holding all other relevant regional connections constant.   

 Our forecast equation here, using the direct effects as coefficients is  

 

              Ť = 33.174 - 0.2568tm i
               i=1,2,...,12                                                                              (29) 

 

 tm i
 is the serial count of the months from January (ie tm i

=1) to December (tm i
= 12) of each year.   

 If forecast for December 2012, say, is required, and tm i
 = 12, then  

 

           Ť = 33.174 - .257(12) = 30.09
o
C 

 

Similarly, if forecast for February 2013 is required, tm i
 = 2, then 

         

                    Ť = 33.174 - .257(2) = 32.66
o
C 

 

 

VI. CONCLUSION 
So far it has been demonstrated how one can make forecasts on a variable which can be arranged in any 

sequence, including time-order, using the multiple regression approach and the robust method of dummy 

variables, with the design matrix obtained by a cumulative coding arrangement. The direct effects, obtained 

through the method of path analysis, are used as parameter estimates, where they are significant.  

This procedure can be viewed as having the ability to break down a single sequence of data into its 

hitherto not visible components, thus creating a let-in into the bits and pieces that make up the variable, and the 

relevant pieces reassembled to obtain a forecasting model for the variable.     
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