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ABSTRACT:  Let f (z) be a transcendental meromorphic function of finite order with four distinct evP for 

simple zeros and k be a positive integer. We wish to improve theresult of Hong xun Yi by introducing the notion 

of the order of multiplicity for the zeros of f (z). 

 

I. INTRODUCTION 

 We call a an evP (exceptional value in the sense of Picard) for f if    n(r, a, f) = O (1). Thus, a 

is an evP for f if f-a has only a finite number of zeros. 

In [9], Singh has proved the following. 

 

Theorem A Let f(z) be a transcendental meromorphic function of finite order with four (finite or 

infinite) distinct evP for simple zeros. Then,  
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Later, Hong Xun Yi observed the following in [6] 

Theorem B Let f(z) be a transcendental meromorphic function of finite order with four distinct evP 

for simple zeros.  

(i) If  is an evP for simple zeros of f(z), then  
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 (ii) if  is not an evP for simple zeros of f(z), then.  
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Also, Yi has given the generalization to Theorem B as follows. 

Theorem C Let f(z) be a transcendental meromorphic function of finite order with four distinct evP 

for simple zeros and k be a positive integer.  

(i) If  is an evP for simple zeros of f(z),then  
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and (ii) if  is not an evP for simple zeros of f(z), Then,  
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We wish to improve this result by introducing the notion of the order of multiplicity for the 

zeros of f(z).  

In order to establish our main result, first we introduce the following notation. 

Definition  Let f(z) be a transcendental meromorphic function and C  a  . 

We denote by  f,a,rn p  the number of zeros of f(z)-a in ,r z  where a zero of multiplicity  p is 

counted according to its multiplicity and a zero of multiplicity > p is counted exactly p times. 
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 f,a,rN p is defined in terms of  f,a,rn p  in the usual way. 

We define  
 
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Our main result is the following. 

Theorem 1 Let f(z) be a transcendental meromorphic function of finite order and k be a positive 

integer.  
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Proof Let q21 a., . ,.a,a  be distinct complex numbers.  

 By the Second Fundamental Theorem, we have 
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From (2) and (3), we have  
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Thus, 
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after simplification. 

Letting q  , we get  

 
 
 

  1f,a
1p

p

f,rT

f,rN
lim p

Car




 


 

        f,
1p

p
1 p 


       (6)  

On the other hand, 
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From (6) and (9), we have,  
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From (7) and (10), we have  

 
 
 

1
f,rT

f,rN
lim
r




   using the fact that    f,rTf,rN                                                (11)  

Now,  
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From (10), (11) and (12), we have  
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Remarks  1 For simple zeros of f(z), we have    f,f, 1p   

Hence the above Theorem becomes 
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Which is the result of  Hong-Xun-Yi 

Remark 2  In particular, for simple zeros of f(z)  

(a) If   is an evp, then   1f,1   

Therefore,   
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and (b) if  is not an evp, then   0f,1   

Therefore,  
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which is Theorem C. 

One can easily see that Theorem B follows by Theorem C by putting k = 1. 

Now, we wish to extend Theorem 1 to differential polynomials.  

Theorem 2 Let P[f] be a homogeneous differential polynomial  in f having degree p  and weight 
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To prove the above Theorem, we require the following Lemmas. 

 

Lemma 1  If  P[f] is a homogeneous differential polynomial  in f, then 
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         f,rSf,rmp  , by Milloux‟s Theorem. 

Lemma 2 [7] If P[f] is a homogeneous differential polynomial  in f, then 
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Lemma 3 [7] If f is a meromorphic function with finite order such that  
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Lemma 4 [7] Suppose Q[f] is a differential polynomial  in f. Let z0 be a pole of f of order m and not a 

zero or a pole of the co-efficient of Q[f]. Then z0 is a pole of Q[f] of order at most  QQQm    

Proof of Theorem 2  
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From (13) and (14), we c-+************** 
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Hence the result. 
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