Exceptional Values of Meromorphic Functions and Differential Polynomials

${ }^{1}$ S. S. Bhoosnurmath and ${ }^{2}$ K.S.L.N.Prasad
${ }^{1}$ Department of Mathematics, Karnatak University, Dharwad-580003-INDIA
${ }^{2}$ Lecturer, Department of Mathematics, Karnatak Arts College, Dharwad-580001-INDIA

```
ABSTRACT: Let \(f(z)\) be a transcendental meromorphic function of finite order with four distinct evP for simple zeros and \(k\) be a positive integer. We wish to improve theresult of Hong xun Yi by introducing the notion of the order of multiplicity for the zeros of \(f(z)\).
```


I. INTRODUCTION

We call a an evP (exceptional value in the sense of Picard) for f if $n(r, a, f)=O$ (1). Thus, a is an evP for f if f -a has only a finite number of zeros.
In [9], Singh has proved the following.
Theorem A Let $\mathrm{f}(\mathrm{z})$ be a transcendental meromorphic function of finite order with four (finite or infinite) distinct evP for simple zeros. Then,

$$
\lim _{r \rightarrow \infty} \frac{\mathrm{~T}\left(\mathrm{r}, \mathrm{f}^{1}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\frac{3}{2}
$$

Later, Hong Xun Yi observed the following in [6]
Theorem B Let $f(z)$ be a transcendental meromorphic function of finite order with four distinct evP for simple zeros.
(i) If ∞ is an evP for simple zeros of $f(z)$, then

$$
\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{~T}\left(\mathrm{r}, \mathrm{f}^{\prime}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\frac{3}{2} \quad \text { and }
$$

(ii) if ∞ is not an evP for simple zeros of $f(z)$, then.

$$
\lim _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)}=2
$$

Also, Yi has given the generalization to Theorem B as follows.
Theorem C Let $f(z)$ be a transcendental meromorphic function of finite order with four distinct evP for simple zeros and k be a positive integer.
(i) If ∞ is an evP for simple zeros of $f(z)$, then
$\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{k})}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\frac{1}{2} \mathrm{k}+1$
and (ii) if ∞ is not an evP for simple zeros of $f(z)$, Then,

$$
\lim _{r \rightarrow \infty} \frac{T\left(r, f^{(k)}\right)}{T(r, f)}=k+1
$$

We wish to improve this result by introducing the notion of the order of multiplicity for the zeros of $f(z)$.
In order to establish our main result, first we introduce the following notation.
Definition Let $f(z)$ be a transcendental meromorphic function and $a \in \bar{C}$.
We denote by $n_{p}(r, a, f)$ the number of zeros of $f(z)-a$ in $|z| \leq r$, where a zero of multiplicity $\leq p$ is counted according to its multiplicity and a zero of multiplicity $>\mathrm{p}$ is counted exactly p times.
$N_{p}(r, a, f)$ is defined in terms of $n_{p}(r, a, f)$ in the usual way.
We define $\delta_{\mathrm{p}}(\mathrm{a}, \mathrm{f})=1-\varlimsup_{\mathrm{r} \rightarrow \infty} \frac{\mathrm{N}_{\mathrm{p}}(\mathrm{r}, \mathrm{a}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})}$
Our main result is the following.
Theorem 1 Let $f(z)$ be a transcendental meromorphic function of finite order and k be a positive integer.

$$
\begin{align*}
& \text { If } \sum_{\mathrm{a} \in \overline{\mathrm{C}}} \delta_{\mathrm{p}}(\mathrm{a}, \mathrm{f})=4 \text {, then } \tag{1}\\
& \\
& \quad \lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{~T}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{k})}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\mathrm{k}+1-\frac{\mathrm{pk}}{\mathrm{p}+1} \delta_{\mathrm{p}}(\infty, \mathrm{f})
\end{align*}
$$

Proof Let $a_{1}, a_{2}, \ldots, a_{q}$ be distinct complex numbers.
By the Second Fundamental Theorem, we have

$$
\begin{align*}
& \qquad \begin{aligned}
&(\mathrm{q}-1) \mathrm{T}(\mathrm{r}, \mathrm{f})<\sum_{\mathrm{i}=1}^{\mathrm{q}} \overline{\mathrm{~N}}\left(\mathrm{r}, \mathrm{a}_{\mathrm{i}}, \mathrm{f}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{O}\{\log \mathrm{r}\} \\
& \text { Again, } \overline{\mathrm{N}}\left(\mathrm{r}, \mathrm{a}_{\mathrm{i}}, \mathrm{f}\right) \leq \frac{\mathrm{p}}{\mathrm{p}+1} \mathrm{~N}_{\mathrm{p}}\left(\mathrm{r}, \mathrm{a}_{\mathrm{i}}, \mathrm{f}\right)+\frac{1}{\mathrm{p}+1} \mathrm{~N}_{\mathrm{p}}\left(\mathrm{r}, \mathrm{a}_{\mathrm{i}}, \mathrm{f}\right) \\
& \leq \frac{\mathrm{p}}{\mathrm{p}+1} \mathrm{~N}_{\mathrm{p}}\left(\mathrm{r}, \mathrm{a}_{\mathrm{i}}, \mathrm{f}\right)+\frac{1}{\mathrm{p}+1} \mathrm{~T}(\mathrm{r}, \mathrm{f})+\mathrm{O}(1)
\end{aligned} \tag{2}
\end{align*}
$$

From (2) and (3), we have

$$
\begin{equation*}
(\mathrm{q}-1) \mathrm{T}(\mathrm{r}, \mathrm{f})<\frac{\mathrm{p}}{\mathrm{p}+1} \sum_{\mathrm{i}=1}^{\mathrm{q}} \mathrm{~N}_{\mathrm{p}}\left(\mathrm{r}, \mathrm{a}_{\mathrm{i}}, \mathrm{f}\right)+\frac{1}{\mathrm{p}+1} \mathrm{qT}(\mathrm{r}, \mathrm{f})+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{O}\{\log \mathrm{r}\} \tag{4}
\end{equation*}
$$

Thus, $\varliminf_{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})} \geq \frac{\mathrm{p}}{\mathrm{p}+1} \sum_{\mathrm{i}=1}^{\mathrm{q}} \delta_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{f}\right)-1$,
after simplification.
Letting $\mathrm{q} \rightarrow \infty$, we get

$$
\begin{align*}
\lim _{\mathrm{r} \rightarrow \infty} \frac{\bar{N}(\mathrm{r}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})} & \geq \frac{\mathrm{p}}{\mathrm{p}+1} \sum_{\mathrm{a} \in \overline{\mathrm{C}}} \delta_{\mathrm{p}}(\mathrm{a}, \mathrm{f})-1 \\
& =1-\frac{\mathrm{p}}{\mathrm{p}+1} \delta_{\mathrm{p}}(\infty, \mathrm{f}) \tag{6}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f}) \leq \frac{\mathrm{p}}{\mathrm{p}+1} \mathrm{~N}_{\mathrm{p}}(\mathrm{r}, \mathrm{f})+\frac{1}{\mathrm{p}+1} \mathrm{~N}_{\mathrm{p}}(\mathrm{r}, \mathrm{f}) \tag{7}
\end{equation*}
$$

Therefore, $\bar{N}(r, f) \leq \frac{p}{p+1} N_{p}(r, f)+\frac{1}{p+1} T(r, f)$
Thus, $\overline{\lim }_{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)} \leq \frac{p}{p+1} \overline{\lim }_{r \rightarrow \infty} \frac{N_{p}(r, f)}{T(r, f)}+\frac{1}{p+1}$

$$
\begin{equation*}
=1-\frac{\mathrm{p}}{\mathrm{p}+1} \delta_{\mathrm{p}}(\infty, \mathrm{f}) \text { after simplification. } \tag{9}
\end{equation*}
$$

From (6) and (9), we have,

$$
\begin{equation*}
\lim _{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{~N}}(\mathrm{r}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=1-\frac{\mathrm{p}}{\mathrm{p}+1} \delta_{\mathrm{p}}(\infty, \mathrm{f}) \tag{10}
\end{equation*}
$$

From (7) and (10), we have

$$
\begin{equation*}
\varlimsup_{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{~N}}(\mathrm{r}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=1 \quad \text { using the fact that } \mathrm{N}(\mathrm{r}, \mathrm{f}) \leq \mathrm{T}(\mathrm{r}, \mathrm{f}) \tag{11}
\end{equation*}
$$

Now, $T\left(r, f^{(k)}\right)=m\left(r, f^{(k)}\right)+N\left(r, f^{(k)}\right)$

$$
\begin{align*}
& =[\mathrm{m}(\mathrm{r}, \mathrm{f})+\mathrm{O}(\log \mathrm{r})]+\mathrm{N}(\mathrm{r}, \mathrm{f})+\mathrm{k} \overline{\mathrm{~N}}(\mathrm{r}, \mathrm{f}) \\
& <\mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{k} \overline{\mathrm{~N}}(\mathrm{r}, \mathrm{f})+\mathrm{O}(\log \mathrm{r}) \tag{12}
\end{align*}
$$

From (10), (11) and (12), we have

$$
\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{~T}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{K})}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=1+\mathrm{k}\left[1-\frac{\mathrm{p}}{\mathrm{p}+1} \delta_{\mathrm{p}}(\infty, \mathrm{f})\right]
$$

Therefore, $\quad \lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{k})}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=(\mathrm{k}+1) 1-\frac{\mathrm{pk}}{\mathrm{p}+1} \delta_{\mathrm{p}}(\infty, \mathrm{f})$ and hence the result.
Remarks 1 For simple zeros of $f(z)$, we have $\delta_{p}(\infty, f)=\delta_{1}(\infty, f)$
Hence the above Theorem becomes

$$
\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{~T}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{k})}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=(\mathrm{k}+1)-\frac{1}{2} \mathrm{k} \delta_{1}(\infty, \mathrm{f})
$$

Which is the result of Hong-Xun-Yi
Remark 2 In particular, for simple zeros of $f(z)$
(a) If ∞ is an evp, then $\delta_{1}(\infty, f)=1$

Therefore, $\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{k})}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\frac{1}{2} \mathrm{k}+1$
and (b) if ∞ is not an evp, then $\delta_{1}(\infty, f)=0$
Therefore, $\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{T}\left(\mathrm{r}, \mathrm{f}^{(\mathrm{k})}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\mathrm{k}+1$
which is Theorem C.
One can easily see that Theorem B follows by Theorem C by putting $\mathrm{k}=1$.
Now, we wish to extend Theorem 1 to differential polynomials.
Theorem 2 Let $\mathrm{P}[\mathrm{f}]$ be a homogeneous differential polynomial in f having degree γ_{p} and weight Γ_{p} with $\sum_{\mathrm{a} \neq \infty} \Theta(\mathrm{a}, \mathrm{f})=2$.
Then, $\quad \lim _{r \rightarrow \infty} \frac{\mathrm{~T}(\mathrm{r}, \mathrm{P}[\mathrm{f}])}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\Gamma_{\mathrm{p}}$
To prove the above Theorem, we require the following Lemmas.
Lemma 1 If $P[f]$ is a homogeneous differential polynomial in f, then

$$
\mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \gamma_{\mathrm{p}} \mathrm{~m}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

Proof $m(r, P[f])=m\left(r, \frac{P[f]}{f^{\gamma_{p}}} f^{\gamma_{p}}\right)$

$$
\begin{aligned}
& \left.\leq m\left(r, \frac{\mathrm{P}[\mathrm{f}]}{\mathrm{f}^{\gamma_{\mathrm{P}}}}\right)+\mathrm{m}\left(\mathrm{r}, \mathrm{f}^{\gamma_{\mathrm{p}}}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f})\right] \\
& \leq \gamma_{\mathrm{p}} \mathrm{~m}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}), \text { by Milloux's Theorem. }
\end{aligned}
$$

Lemma 2 [7] If P[f] is a homogeneous differential polynomial in f, then
$\mathrm{N}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \gamma_{\mathrm{p}} \mathrm{N}(\mathrm{r}, \mathrm{f})+\left(\Gamma_{\mathrm{p}}-\gamma_{\mathrm{p}}\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$

Lemma 3 [7] If f is a meromorphic function with finite order such that $\sum_{a \neq \infty} \Theta(a, f)=2$, then $\lim _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)}=1$
Lemma 4 [7] Suppose $Q[f]$ is a differential polynomial in f. Let z_{0} be a pole of f of order m and not a zero or a pole of the co-efficient of $\mathrm{Q}[\mathrm{f}]$. Then z_{0} is a pole of $\mathrm{Q}[\mathrm{f}]$ of order at most $\mathrm{m} \gamma_{\mathrm{Q}}+\left(\Gamma_{\mathrm{Q}}-\gamma_{\mathrm{Q}}\right)$

Proof of Theorem 2

Now, $T(r, P[f])=m(r, P[f])+N(r, P[f])$
Therefore, by Lemma 1 and Lemma 2, we have
$\mathrm{T}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \gamma_{\mathrm{p}} \mathrm{T}(\mathrm{r}, \mathrm{f})+\left(\Gamma_{\mathrm{p}}-\gamma_{\mathrm{p}}\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$.
Hence, using Lemma 3 , we get

$$
\lim _{r \rightarrow \infty} \frac{T(r, P[f])}{T(r, f)} \leq \gamma_{P}+\Gamma_{P}-\gamma_{P}
$$

which implies $\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{T}(\mathrm{r}, \mathrm{P}[\mathrm{f}])}{\mathrm{T}(\mathrm{r}, \mathrm{f})} \leq \Gamma_{\mathrm{p}}$
On the other hand, by Lemma 4, we have

$$
\mathrm{N}(\mathrm{r}, \mathrm{P}[\mathrm{f}])=\operatorname{Max}\left\{\mathrm{m} \gamma_{\mathrm{p}}+\left(\Gamma_{\mathrm{p}}-\gamma_{\mathrm{p}}\right)\right\} \mathrm{N}(\mathrm{r}, \mathrm{f})
$$

Therefore, $\mathrm{N}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \geq \operatorname{Min}\left\{\mathrm{m} \gamma_{\mathrm{p}}+\left(\Gamma_{\mathrm{p}}-\gamma_{\mathrm{p}}\right)\right\} \mathrm{N}(\mathrm{r}, \mathrm{f})$
Therefore, $N(r, P[f]) \geq \gamma_{p} N(r, f)+\left(\Gamma_{p}-\gamma_{p}\right) \bar{N}(r, f)$
Thus, $T(r, P[f])=m(r, P[f])+N(r, P[f])$
Therefore, $T(r, P[f]) \geq \gamma_{p} m(r, f)+\gamma_{p} N(r, f)+\left(\Gamma_{p}-\gamma_{p}\right) \bar{N}(r, f)+S(r, f)$
Therefore, $T(r, P[f]) \geq \gamma_{p} T(r, f)+\left(\Gamma_{p}-\gamma_{p}\right) \bar{N}(r, f)+S(r, f)$.
Hence $\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{T}(\mathrm{r}, \mathrm{P}[\mathrm{f}])}{\mathrm{T}(\mathrm{r}, \mathrm{f})} \leq \Gamma_{\mathrm{p}}$, in view of Lemma 3 .
From (13) and (14), we c-+**************
onclude that $\lim _{\mathrm{r} \rightarrow \infty} \frac{\mathrm{T}(\mathrm{r}, \mathrm{P}[\mathrm{f}])}{\mathrm{T}(\mathrm{r}, \mathrm{f})}=\Gamma_{\mathrm{p}}$
Hence the result.

II. ACKNOWLEDGEMENT:

The second author is extremely thankful to University Grants Commission for the financial assistance given in the tenure of which this paper was prepared.

REFERENCES

[1] BARKER G. P. and SINGH A. P. (1980) : Commentarii mathematici universitatis : Sancti Pauli 29, 183.
[2] DOERINEGER. W. (1982) : "Exceptional values of differential polynomials", Pacific J. Math 98, 55-62.
[3] G. JANK, E. MUES and L. VOLKMANN (1986) : Meromorphic functionen, die mit ihrer ersten und zweiten ableitung einen endlichen wert teilen, Complex variables 6, 51-71.
[4] GARY G. GUNDERSEN and LIAN-ZHONG YANG (1998) : 'Entire functions that share on value with one or two of their derivatives', Jl. of Math. Ana. and Appl. 223, 88-95.
[5] HAYMAN W. K. (1964) : Meromorphic functions, Oxford Univ. Press, London.
[6] HONG-XUN YI (1990) : 'On a result of Singh', Bull. Austral. Math. Soc. Vol. 41 (1990) 417-420.
[7] HONG-XUN YI (1991) : "On the value distribution of differential polynomials", Jl of Math. Analysis and applications 154, 318-328.
[8] SEIKI MORI (1970) : 'Sum of deficiencies and the order of a meromorphic function, Tohoka Math Journal, 22, 659-669.
[9] SINGH A. P. (1981) : 'A note on exceptional value picard for simple zeros' Progr. Math. 15, 9-11.
[10] SINGH A. P. and DUKANE S. V. (1989) : Some notes on differential polynomial proc. Nat. Acad. Sci. India 59 (A), II.
[11] SINGH A. P. and RAJSHREE DHAR (1993) : Bull. Cal. Math. Soc. 85, 171-176.

