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Abstract: This study is a review to the special issue on artificial intelligence (Al) methods for groundwater
level (GWL) modeling and forecasting, and presents a brief overview of the most popular Al techniques, along
with the bibliographic reviews of the experiences of the authors over past years, and the reviewing and
comparison of the obtained results. Accordingly, 67 journal papers published from 2001 to 2018 were reviewed
in the terms of the features and abilities of the modeling approaches, input data consideration, prediction time
steps, data division, etc. From the reviewed papers it can be concluded that despite some weaknesses, if the Al
methods properly be developed, they can successfully be used to simulate and forecast the GWL time series in
different aquifers. Since some of the stages of the Al modeling are based on the experience or trial-and-error
procedures, it is useful to review them in the special application on GWL modeling. Many partial and general
results were achieved from the reviewed papers, which can provide applicable guidelines for researchers who
want to perform similar works in this field. Several new ideas in the related area of research are also presented
in this study for developing innovativemethodsandforimprovingthequalityofthemodeling.

1. Introduction

Measurement and analysis of the groundwater level (GWL) in aquifers is an important and useful task
in the management of the groundwater resources, and the knowledge about the GWL variations can be used for
quantifying the groundwater availability. The GWL variations in wells provide a direct measure of the impact of
groundwaterdevelopment,andimportantinformationaboutaquiferdynamicsisoftenembeddedinthecontinuouslyreco
rdedGWLtimeseries(Butleret al., 2013). Therefore, the modeling and predicting of GWL is neces- sary for water
managers and engineers to qualify and quantify groundwater resources and to maintain a balance between
supply and demands.

For GWL modeling, conceptual or physical based models are tradi- tionally the main tool; however
they have some practical limitations,including the need for large amount of data and input parameters. In many
cases, data is limited on one hand, and obtaining accurate pre- dictions is more important than
understandingunderlyingmechanisms, on the other hand, and therefore, the black-box artificial intelligence (Al)
models can be a suitable alternative. Although there are different methods for modeling and predicting GW
Linaquiferssuchas conceptual, physical, numerical, statistical, etc. methods, however inrecent years, Al methods
have been used for their simplicity and ac- ceptable results, and many researches have investigated the perfor-
mance of Al models for GWL modeling in diff erent parts of the world. This study is a review of those papers
that have used Al methods for modeling and forecasting GWL. Of course, these methods have some
weaknesses, such as overtraining, low generalizability, risk of using unrelated data, incorrect modeling with
inappropriate methods, and so on. However, their simplicity of use, high speed run and acceptable
accuracywithouttheneedtoknowtheproblemsphysicshaveledmany researchers to apply them. It should be noted
that it is the nature or perhaps the defect of the Al models that if they were developed for the prediction of a
specified time series, the accurate results could not ne- cessarily be derived in the similar ones; but the major
advantage of Al modelsisthenonlinearandcomplicatedphenomenamodelingwithout the need for full
understanding underlying mechanisms (Rajaee andBoroumand, 2015). Therefore, the use of Al approaches in
GWL mod- eling has steadily increased and attracted interest of many researchers in theworld.

In order to develop new and better Al approaches for GWL mod- eling, it is important to investigate
what has been done with Al models and current researches, and there is a need for researchers to know
whatotherscholarshavedoneinthisregard.Manyreviewpapershave been recently published that have explored
using Al models in hy- drology (e.g., Solomatine (2005)), or in diff erent hydrological and water resources fields
(e.g., Maier et al. (2010)in the field ofriver variables modeling, and Wu et al. (2014) in the field of water quality
modeling), while, no review paper is find that has centered on the specific use of Al models for GWL modeling
and forecasting. Each hy- drological phenomenon has its own characteristics, and it is reasonable
thattheuseof AlmodelsinGWLmodelingtobereviewedindividually. Nourani et al. (2014) have cited and reviewed
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some wavelet-Al studies in GWL modeling (5 papers); however, in the best knowledge of the
authors,thereisnotyetanindividualandcomprehensivereviewpaper evaluating the application of Al methods in
GWL modeling and for- casting.

The current review study presents and compares the details of the journal papers dealing with the Al
methods for GWL modeling and forecasting, in the terms of the features and abilities of the modeling
approaches, the input data consideration, the quantity and quality of used data, the study areas and aquifers, the
prediction time steps, the data division, etc. 67 papers are reviewed in this study. These papers
havebeenpublishedintheinternationaljournalshelongstothefamous publications such as Elsevier, Springer, IWA,
Wiley, ASCE, etc. during the period from 2001 to 2018. The papers were found from searching the web using
the relevant key words, and were chosen because they were published in well-known international journals in
the fields of hydrology, water resources and Al sciences. Based on the search, Journal of Hydrology (Elsevier)
with 12 papers and Water Resources Management (Springer) with 11 papers are the journals that have been
published the most papers in this regard. Also, Hydrological Processes (Wiley), Journal of Hydroinformatics
(IWA), Hydrogeology Journal (Springer)andComputers&Geosciences(Elsevier),eachonehavebeen published
three papers in this regard. The rest of the journals (a totalof 29 journals) that had papers in this regard have
been published one or two papers so far (Tablel).

Fig. 1shows number of published papers regarding Al in GWL modeling (reviewed in this study) with
respect to year of publication. As can be seen, such publications have increased in recent years. Therefore, due
to the interest of researchers in this field and given the difficulty of conceptual/numerical GWL modeling, this
review was provided to help new researches in this field.

Details of the selected papers are given in Table 1, where thepapers on the subject of GWL modeling
with Al methods are comparing re- garding to the authors and year of publication, journals and impact factor
(IF), region of study, type of utilized Al methods, hydrological input variables, time steps and range of total
data. The abbreviations used in the Table 1 have been explained in the end of thetable.

In the following, some very commonly used Al methods for mod- eling GWL are addressed. The methods
include artificial neural net- works (ANN), adaptive neuro-fuzzy inference system (ANFIS),genetic
programming (GP), support vector machine (SVM) and some hybrid models such as wavelet-Al models. Firstly,
a brief description of each method is presented and thereafter the related conducted studies are cited and
reviewed. This is followed by general results and discussion, conclusionsand recommendations for future
avenues of research.

I1. Artificial intelligence methods for GWL modeling
Introductory

ANNSs are computational models inspired by biological neural net- works. They can be used to
approximate functions that are generally unknown,ortopredictfuturevaluesofpossiblynoisytimeseriesbased on
past histories. ANNs are composed of simple elements operating in parallel. As in nature, the connections
between elements largely determine the network function (Beale et al., 2010). A common ANN comprised of
multiple elements, called neurons (processing elements), and connection pathways that link them. The neurons
having similar properties are grouped in one single layer. Typically, three separate layers exist in an ANN,
namely input, hidden and output layers. The input layer takes input variables, which in the case of GWL
forecasting are usually the precipitation, temperature, GWL, etc. time series. In the hidden and output layers,
each neuron passes its weighted and biased input through a desired transfer (activation) function to produce a re-
sult. ANNs are trained with a sample data, so that a particular input leads to a specific target output. Training
means tuning the adjustable network parameters (called weights and biases) to optimize the net- work
performance. The training process can be done with various training (learning) algorithms. The Levenberg-
Marquardt (LM) algo- rithm, the back-propagation (BP) algorithm, the Bayesian regulariza- tion (BR) algorithm
and the gradient descent with momentum and adaptivelearningrateback-propagation (GDX) algorithm
areexamples of most used training algorithms inthe literature.

Different ANN types have been widely described in the literature; however several types of them are
briefly presented here. The feed- forward neural networks (FNNs) propagate input signal through the network in
a forward direction, layer by layer. The multilayer percep- tron (MLP) network as a historical FNN consists of
an input layer, one or more hidden layers, and one output layer. The recurrent neural networks (RNN) feed the
outputs of the hidden layer back to itself. In the RNNs, an additional layer is interconnected with the hidden
layer that plays the role of the network history. The radial basis function (RBF) networks are also feed-forward,
but have only one hidden layer that uses Gaussian transfer function and a standard Euclidean distance to
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measure how far an input vector is from a specific center vector. The amount of Euclidean distance is transferred
by the Gaussian function that determines the output of the layer. RBF networks tend to learn much faster than a
FNN.

Theself-organizingmap(SOM)networkasakindof ANNsconsists of one input layer and one output layer
called ‘Kohonen’ layer. The input layer is fully connected to the output layer. The SOM is trained using an
unsupervised competitive training algorithm. The n-dimen- sional input vector is sent through the network, and
the Euclidean distance between the weight vector and the input vector is computed. The training process will be
continued to select best neurons that re- duce the distance between the weights and inputs. An advantage ofthe
SOM is to map high-dimensional input space into low dimensional space.

Regardless of the type of utilized ANN, they have some common modelingstages. Fig.2 shows the
typicalstagesofusingANNsforGWL simulation andforecasting.

BIBLIOGRAPHICreview

RecentexperimentsinGWLmodelinghavereportedthatANNsmay offer a promising alternative for
conceptual methods. In one of the first studies, Coulibaly et al. (2001)compared three types of ANN models
using GWL, precipitation and temperature time series as the inputs of models to simulate average monthly GWL
in the Gondo aquifer, Bur- kina Faso. Simulation results showed that the RNN is most efficient compared to the
static structure input delay ANN and RBF-ANN. Lallahem et al. (2005) evaluated ANN for estimating the
monthly GWL in an unconfined chalky aquifer in northern France. The input datawas the GWL of 13
piezometers, rainfall, mean temperature, precipitation and potential evapotranspiration, and the main objective
was to si- mulate the GWL in a selected piezometer. The simulations revealed the merit of using MLP models.
Daliakopoulos et al. (2005)tested seven different ANN models with various architectures and training algo-
rithms for monthly GWL forecasting in the island of Crete, Greece. The input variables were the past GWL,
temperature,precipitationandriver discharge. TheFNNtrainedwiththelL Malgorithmhadthebestresults. Nayaketal.
(2006) investigatedthepotentialofM LPtrainedwithBP

o. Author (vear) Journal (2018 IF) gion of study sad Al models put variables ime step gz of total dats
{Mumber of dats)
T Toulibaly =t alWater Fesources ResearcElondn aquifer ANN GWL. BT Tonthly — T9E6-T1796 (TUF sets)
(2001) 4.397) Burkina Faso AVerags
7] et alJourmal of HydrologeChally aquifer ofANN GWL, E mean TNonthly 19851999 (131 sets)
{2003) 3.483) northern activa B,
France potential ET
i iak et alJournal of Hydrologslsland of Crete ANN GWL, T,B, §Q lonthly 19882002 (160 sets)
(2003) 3.483) Crazca
4 wak ot al (2006) Water FasourcesCantral GodavariANN WL, neighboring wellshionthly 1981-1989 (T0F sets)
Management (2.548) Dealta GWL, B, avarags
Svstam, India canal releasas
] ishna et al. (2008) Hvdrological ProcessesAndhra Pradash state ANN GWL, L ET Tonthlv 19952004 (120 sats)
3.014) India average
a i (2008} tical HvdroinformaticsChamehamal  plain ANN IODFLOW outpuilfonthly — T95E-1998 {144 sats)
{Book) Tran paramstars
et al (2008) {Groundwater (2.067) hivane river basin, ANN GWL, P, E, QMonthly T980-1997 (216 sats)
northweast China population,
irrigation ratio, irrigation
laraa
3 is atal (I014) Joumal o Vallay ANN . T, pmofl. GWLMonthly 1981-1002 (264 sats)
viroinformatics (1.634) Crete, Gresce ific visld
] i ot al. (J008) Hvdrological ProcassasTabriz aquiter, Iran ANN GWL, K, mean T, Q Jonthlv 19952004 {120 sats)
3.014)
10 i and horzeiniEnvironmental Modaling &Qazvin plain, Iran  ANFIS, Erigimz (GWL Spatial Spatial modsling
(2009} \Assassment modeling
1023}
11 i et alEnvironmental peologv (ncHvderabad, India  ANN ot mentionad in thalMonthlv 20052007 (23 sets)
{2009) 1F) paper
12 Yangat al (1009} Journal of AricWastern Jilin, China ANN LWL fonthly 1986-2004 (132 sets)
Environments {1.835) EVErags
13 s et alWater Rasources0Orissa, India ANN (GWL, K. E, Eiver stags Wasklv 20042007 (174 sats)
{20100 Managament {1.848) SWL,
Pumping rata
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14 Chen =t al. {Z010)  Jourmnal of HydrologicSouthem Taiwan ANN WL, neishboring weallshionthly 19972003 (63 sats)
Enginssring WL averags
1.694)
15 Chen st al. {Z0T1}  Tournal of Water RasourcesSouthemn Taiwan ANN WL, neishboring wellshlonthly T998=2004 (76 s=ts)
Planning WL awverags
:and Management {3.537)
14 st alJournal of Iran ANFIS, ANN GWL T, K Jonthly 19852009 {264 sats)
{2011) wdroinformatics (1.634)
17 75kiand Chanfournal of HyvdrologsQusbac, Canada ANN, ANN WL E, T Jonthly FO0Z-I009 (B4 sets)
{2011) 3.483) averags
18 Yoon et al {2011}  Joumal of Hydrologs of th=SVhL ANN GWL, P, tide [evel Sim-hourly 20042006 (2370 sets)
3.483) Donghas city,
Korea
19 Sreskanth 2t alEnvironmental Eartk AN ANFIS GWL. EETH Jonthly Z000-2008 (54 sets)
{2011) Science (1.369) watershed,
India
1] i et al (Z01T) Environmental EnginseringShabastar plain, Tran ANN-GE GWL, E, lake [=vel Jonthly 1993420086 (144 sats)
Science
1.426)
21 T 1 al/Water FasourcesEdward’s aguifar ANN GWL, P, day number Daily ot mentionsd in ths
(2011} Management {2.848) Taxas, USA pumping papar
2 ] =tal'Arabian Journal for ScienceShiraz plain, Iran  ANN GWL. P T.EQ Jonthly 19933004 {138 sats)
{2012) and
Enginsering (0.865)
23 Taormina et a2l Enginsering Applications ofLagoon of WVenics ANN WL, ELET ourly 20052008 {23850 sats)
{2012) Artificial Italw
Intellissnce (2.894)
24 Kist and Shiri (201Z) Hydrology Hazsarcklllinois State, USA avalst-ANFIS,  GWL ily ZO0T=2008 (2430 sats)
1.754) ANFIS
25 Shipgmohammadi st al Water Rasourceshlashhad plain, Iran 'ANFIS Tonthly 19922007 (180 sats)
{2013) Managsment {2.848)
ig_m and  JhaHvdrogeolozy JournaKonan basin, Kochi AN GWL, B, T, river stage Monthly 18523004 (72 sats)
{2013) {2.109) Japan seasonal
i dummy variablas
27 Bhiri et al. (2013)  Computers & Geosciences southGE,  ANF, ANFIS.CWL, L ET ilv FO0T—F0UE (2920 sets)
{2.333) Korsa SV averags
28 - stfournal of Hydro yj plain, Iran P, ANFIS WL, P.E Jonthly 7 wears (84 sats)
al. environment Rassarch
{2013} 1425y

Table 1 Details of the reviewed papers, where the Al methods were used to model the GWL.
(continuedonnextrAGE)

Table 1 (continued)

MNo. Author (year) Joumal (2016 IF) Fegion of study Used Al models Tnput vanahles Tmme step  Fange of totl datz
{Number of datz)
36 Wimg etal (2014)  Joumal of Water SupplyJilin Province, China ANN GWL Monthly 1086-2013  (about 336
Research and Technology- sets)
Aqua (0.824)
37 Tha  ad vdrological Processe basin, Kochi ANN-GA GWL, R, T, river stageMonthly — [{900-2004 (72 sets)
{2015) 3.014) Japan segsonal
dummy varizbles
38 Vang et ol (2013) 7 Arzbian Joumal Tslend Wavelet- ANN, ANN GWL Tonthly 200020171 {144 sets) |
Geosciences (0.933) Fujian, \average
China
30 et 2l (2013) vdrogeology i Imitou mime site]Wavelet-ensemble-  Fecharge, F. T aily TOUO=2011 (900 zets)
{2.10%) Cuebec, ANN,
Canada Wavelet- ANN, ANN
40 ¥ et alNatural Harards (1.833) plain, Tran  ANFIS, SVE E, Q, AquifaiMonthly 10002010 (240 zetz)
(2013) discharge
41 Juan et al (2015)  Joumal — of  Hydrology(inghai-Tibet ANN GWL.T.P aily JOT0-2012 (833 sets)
3.483) Platean, China
42 Gholami et alJoumal of  HydrologyCaspian southermANN , tree-rings Amnually  H970-2013 (44 sets)
(2015) 3.483) cozsts, Iran
43 et al (2013) vironmental Earthlangat basm ANFI5, ANN H.E mm and max T Moenthly — 2007-2013 (79 sets)
Sciences (1.369) MMalaysia average
44 et 2l (2013) Joumal  of — HydrologyArdabil plam, Tran avelet- ANN, ANNIGWL, E, nmo] Jonthly 19887017 (300 setz)
3.483)
] et alWater EesourcesMzhanadi  delta ANN GWL, B, E, niver stageWeekly 2004-2007 (174 sets)
{2013) Management (2.848) Ddisha. SWL,
Indiz g rates
46 Gong et o (2013) " Water Rezsourcezshore of T LakeANFIS SVM ANN'GWLSWL P T Tonthly 10082009 (144 szem)
Management (2.348) ‘Okeechobes,
Florida, USA
A7 5un et al (2016) vdrology  and  EarthNee Soon  swampANN SWL F aily J012-2013 (730 zets)
System Sciences forest ,
4.437) Singapore
48 Chang et (2016)  Joumal " “of  HydrologyZhupshut Rwat ANN (SOM-NARK)GWL Q. R fonthly " 2000-2013 7188 sets)

Abbreviations: P, precipitation; T, temperature; R, rainfall; H, humidity; E, evaporation; ET, evapotranspiration;
Q, river flow/discharge/runoff; SWL, surface water level; GS, geostatistics
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Fig. 1. Number of published papers regarding Al methods in GWL modeling (used in this study) with respect to
year of publication.

algorithm in forecasting the monthly GWL in an unconfined coastal aquifer in India. The inputvariables
were selected as precipitation, canal releases and GWL of the observation well and two neighboring wells. The
performance was good for 1 and 2-month ahead forecasting, but was deteriorated after 2-month.

Krishna et al. (2008)applied several ANN training algorithms to predict monthly GWL in an urban
coastal aquifer in Andhra Pradesh state, India. It was found that the FNN trained with LM algorithm is a good
choice, compared to BR and RBF algorithms. In their study, GWL were also predicted in neighboring wells
using model parameters from the best network of a well. Mohammadi (2008) tested MODFLOW and
twotypesof ANN, i.e., MLPandRNNtosimulatethemonthlyGWL ofa karstic aquifer, located in Iran. He used data
sets generated by MOD- FLOWfortrainingoftheANNSs.TheresultsindicatedthatANNmodels needed less input
data and took less time to run, compared to MOD- FLOW. Nourani et al. (2008) compared six diff erent types
of ANNSs for

Precipitation

= Selecting input variables ]

= Dutput = GWL J

* Dividing data (train, validate and test
sets)

= Selecting ANMN type l.n.rchltacture] .

+ Transfer function + ...}

= Training the ANNJ L

= Changing ANN options to
improve the paerformance

= Using ANM for GWL simulation and fnrecasting]

LA

Fig. 2. The stages of using ANNs for GWL forecasting.
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spatiotemporal GWL forecasting in Tabriz aquifer, Iran. The monthly GWL in central well,
precipitation, mean temperature and average discharge were selected as the inputs. The optimal ANN was a FNN
trainedwithLMalgorithm,whichwasthenappliedtoforecastGWLsof selected wells, as the spatialmodel.

Feng et al. (2008) applied FNN to investigate the effects of 7 factors i.e.: initial GWL, precipitation,
evaporation, water reservoir inflow, population, synthesis irrigation ratio, and irrigation area, on monthly
GWLinshiyangriverbasin,China.Sensitivityanalysiswiththemodels demonstrated that groundwater extraction for
irrigation is the pre- dominant factor responsible for declining GWL. Tsanis et al. (2014)developed a FNN,
trained with the LM algorithm with five input vari- ables,i.e., precipitation, temperature,
runoff , GWLandspecificyieldfor forecasting the monthly GWL in Messara Valley, Crete, Greece. They used a
deterministic component, which linked precipitation with the seasonal recharge of the aquifer and projected the
seasonal average precipitations. Results showed that the specific yield marginally im- proved the forecasting but
the linearly projected precipitation compo- nent drastically increased theforecasting.
Banerjeeetal.(2009)usedFNNmodeltrainedwithLMalgorithmto predict the monthly GWL of four diversified
wells in Kurmapally wa- tershed, Hyderabad, India. They have not mentioned the used input variables but
forecasted the GWL considering varying recharge and pumping conditions. Yang et al. (2009)applied the BP-
ANN and the integratedtimeseries(ITS)modelstoforecastmonthlyaverageGWLin the western Jilin province of
China. The input variables were only the past GWLs at different intervals of time. The simulation results in-
dicatedthatbothANNandI TSmodelswereaccurateinreproducingtheGWLs,butinthetestphase,the ANNwassuperiort
othelTS.

Mohanty et al. (2010) developed three diff erent training algorithms, viz., LM, BR and GDX algorithms
for weekly GWL forecasting in a tropicalhumidregion,easternindia.Theinputstothemodelsconsisted of
precipitation, pan evaporation, river stage, water level in the drain, pumping rate and GWL in the previous week.
The BR algorithm was found slightly superior to the two other algorithms. Chen et al. (2010)combined the
theory of SOM and RBF. The proposed model could de- cide the number of RBF-ANN hidden units with using
the two-dimen- sional feature map which is constructed by SOM. The inputs were the monthly average GWLs
of six wells in southern Taiwan, while the outputwasthemonthlyaverageGWLofanindividualwell. Theresults
showedthatthefour-siteinputmodelwasmorecompetentcomparedto the single-site model and six-site model. One
year later, Chen et al.(2011)combined of the SOM and BP-ANN for the same study area. Here, the model inputs
were the monthly average GWLs of ten wells, while the output was the GWL of an individual well. It was found
that themulti-siteSOM-BP-ANNmMmodelprovidedthemostaccuratepredic- tions in comparison to the autoregressive
integrated moving average (ARIMA) and single ANNmodels.

Trichakis et al. (2011)simulated daily GWL by MLP at a well lo- cated in the karstic artesian Edward’s
aquifer in Texas, USA. The input variables were the day number, precipitation, pumping and GWL. The testing
data were used to check the ability of the MLP to interpolate or extrapolate in other wells in the region. The
results showed that there was a need for exact knowledge of pumping from each well in karstic aquifers as it was
difficult to simulate the sudden drops and rises. Sreekanth et al. (2011) compared the FNN trained with LM
algorithm andANFISforestimationoftheGWLoftheMaheshwaramwatershed, India. The inputs included the
monthly GWL in 22 wells along with rainfall, temperature, evaporation and relative humidity. The results
showed that the FNN provided better accuracy compared toANFIS.

Rakhshandehroo et al. (2012) used FNN, RBF, RNN and a general- ized regression neural network for

monthly GWL prediction in Shiraz plain, Iran. The precipitation, GWL, temperature, evaporation and
runoff wereutilizedastheinputdata.BestperformanceswereachievedbyFNNandRNNnetworks,respectively. Taormi
naetal.(2012)appliedFNNforlongperiodsimulationsofhourlyGW LsinacoastalunconfinedaquifersitedintheLagoon
ofVenice,Italy. TheFNNwasfirsttrainedto perform one-hour-ahead predictions using past GWL, rainfall and eva-
potranspiration data. After the training, simulations were produced by feeding back the computed outputs in
place of past observed data. The FNN reconstructed accurate GWL for long periods, at least six months, relying
only on the rainfall and evapotranspiration data. Sahoo and Jha(2013) compared MLP trained with LM
algorithm and multi linear re- gression (MLR) approach in monthly GWL forecasting considering rainfall,
temperature, river stage, GWL and 11 seasonal dummy vari- ables as inputs. The study area was Konan basin,
located in Kochi, Japan. They concluded that MLP models have better results; however, considering the
practical advantages of the MLR, it was recommended as a cost-eff ective GWL modelingtool.
Ying et al. (2014) compared the RBF-ANN, ARIMA and ITS models forGWL forecasting of two
wellsinJilin,China.MonthlyGWLwasthe only variable used to develop the models. They concluded that for
forecasting the dynamics of the GWL, the RBF-ANN is preferable, but for analyzing GWL variation, the ITS
and ARIMA may be more appro- priate.
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Juanetal.(2015)developedtwoFNNmodels,onewiththreeinputs (previous GWL, temperature and precipitation)
and another with two inputs (temperature and precipitation only) to forecast the daily var- iations of the supra-
permafrost GWL in the Qinghai-Tibet plateau, China. The FNNs were trained with LM algorithm, and the
results in- dicated that the three inputs model produced better accuracy perfor- mance. However, if there are no
field observations of the GWL, the models developed using only two inputs also have good accuracy. Gholami
et al. (2015) wused a MLP trained with LM algorithm to simu- lateannual GWL
fluctuationsoftwowellslocatedinanalluvialaquifer of the Caspian Sea southern coasts, Iran, for the period from
1912 to 2013. The tree-ring diameter and the precipitation during the growing season weret
heinputparametersfortheMLP ,andtheGWLduringthegrowingseasonwastheoutput. Theresultsshowedthattheinteg
rationofdendrochronologyand ANNrendersahighdegreeofaccuracyinthe simulation of annual GWL. Mohanty et
al. (2015)applied FNN for si- multaneous forecasting of the weekly GWL in 18 wells located over a river basin
in India. The inputs were selected as rainfall, pan evapora- tion, river stage, water level in the surface drain,
pumping rates of 18 sites and GWLs of 18 sites in the previous week, which led to 40 input
nodesand18outputnodes.ComparisonbetweentheLM,BRandGDX training algorithms showed that the GDX was
the most suitable algo- rithm for the studyarea.

Sun et al. (2016)applied an MLP trained with LM algorithm to forecast the daily GWL in a freshwater

swamp forest of Singapore. The inputs to the model were the surrounding reservoir levels and rainfall.
TheresultsrevealedthatMLPproducedbetterpredictionwithaleading time of 1 day compared toMLR.
Wunsch et al. (2018)used the nonlinear autoregressive with exo- genous inputs neural network (NARX) for
GWL forecasting of several wells in southwest Germany. Precipitation and temperature were chosen as input
variables. All input and target time series were de- composed using the seasonal trend based on loess algorithm
to detect significant time lags and determine input and feedback delays needed for NARX application. The
results showed that NARX is suited to per- formGWLpredictionsforuninfluencedobservationwells,eventhough
the number of input variables is limited. Ghose et al. (2018) developed theRNN model to forecast
monthlyGWLofawellinOdisha,Indiaasa function of rainfall, temperature, humidity, runoff and evapo-
transpiration. From the results, evapotranspiration and runoff were the influencing parameters which affect the
GWL, and inclusion of them improved the modelefficiency.

Lee et al. (2018)applied the FNN to predict hourly GWL of 8 ob- servation wells located in
Yangpyeong riverside area, South Korea. They investigate the relative impacts of the input variables, and as a
result used the river level and pumping rates from two extraction wells as input variables, while the precipitation
was found to be a weak influencing factor, and therefore it was not used as an input variable. Kouziokas et al.
(2018)used multiple FNN with various network structures and training algorithms to forecast the daily GWL of
a well located in Montgomery County, Pennsylvania, USA. Using the hu- midity, precipitation, and temperature
as input variables the FNN with the LM training algorithm was the best model.

Results

AnassessmentofthevariousstudiesonANNmodelingoftheGWL revealed the followingissues:

1) The ANN models can be extended easily from univariate to multi- variate cases compared to the conceptual
models, and the model complexity can be varied simply by altering the transfer function, training algorithm or
network architecture.Similartotheregression models,theinputvariablescanbeconsideredbasedonanempirical proof
or a correlation analysis. The results of the reviewed papers alsoindicatedthatANNscapturethecomplexnon-
linearbehaviorof the GWL time series relatively better than the regular regression models such as ARIMA
andMLR.

2) The reviews reveal that the LM algorithm is the most popular training algorithm used to train ANNSs for
GWL modeling. The LM algorithmisamodificationoftheclassicNewtonalgorithmusedfor finding an optimum
solution to a minimization problem. The LM algorithm is often characterized as more stable and efficient, and
some researchers point out that it is faster and less easily trapped in local minima than other training algorithms
(Daliakopoulos et al.,2005). Zounemat-kermani et al. (2013) in a study of comparison the performanceof RBF
and LMfeed-forward ANNsforpredictingdaily watershed runoff, concluded that LM algorithm is superior to the
RBFinpredictionofonedayaheadbaseandhighflows,buttheRBF algorithm out performed the
LMinpredictingfloodevents. TheGWL time series do not possess a characteristic such as flood in runoff time
series, therefore it seems that the superiority of LM in GWL modeling correspond to the results of the study of
Zounemat-ker- mani et al.(2013).

3) The three layers FNN with the sigmoid transfer function in the hidden layer and linear transfer function in
output layer is the most commonstructureof ANNforGWLmodeling. Thesigmoidfunction is diff erentiable,
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continuous, and monotonically increasing in its domainanditisthemostfrequentlyemployedfunctioninmodeling
(Ravansalar and Rajaee, 2015). It should be mentioned that in the majority of reviewed papers the structure of
ANN and number of hidden neurons were achieved by a trial-and-errorprocedure.

ADAPTIVE neuro-fuzzy inference system (ANFIS) for GWLmodeling
Introductory

The adaptive neuro-fuzzy inference system is a combination of an adaptive neural network (AN) and a
fuzzy inference system (FIS), thus it has potential to capture the benefits of two methods in a single fra-
mework. Jang (1993) introduced architecture and a learning procedure for the ANFIS that uses a neural network
learning algorithm for con- structing a set of fuzzy if-then rules with appropriate membership functions (MFs)
from the specified input-output pairs. The FIS corre- sponds to a set of fuzzy if-then rules that have learning
capability to approximate nonlinear functions. There are two approaches for FIS, namely Mamdani and Sugeno.
The differences between these two ap- proaches arise from the consequent part. Mamdani’s approach uses
fuzzyMFs,whereasSugeno’sapproachuseslinearorconstantMFs. The
ANFISisanAlmethodwithflexiblemathematicalconstructionwhichis capable of identifying complex nonlinearity
and uncertainties due to randomness and imprecision between variables, without attempting to reach an
understanding as to the nature of the phenomena. This ap- proach is capable of approximating any real
continuous function on a compact set to any degree of accuracy. Thus, in parameterestimation/forecasting,
where the given data are such that the system associates measurable system variables with an internal system
parameter, a functional mapping may be constructed by ANFIS that approximates the process of estimation of
the internal system parameter. More in- formation on ANFIS can be found in Jang (1993).

BIBLIOGRAPHICreview

In the area of GWL modeling with ANFIS, Kholghi and hosseini(2009) applied the ordinary kriging
and ANFIS for spatialinterpolation of GWL in an unconfined aquifer in Qazvin, Iran. They use the GWL data of
95 wells for training and testing the models. The Gaussian MF wasused in the ANFIS models. The results
showed that the contourplot of isopieze lines estimated by ANFIS was more efficient than those by kriging.
Jalalkamali et al. (2011)investigated the abilities of ANFIS and ANN with various combinations of monthly
temperature, rainfall and GWLs in two neighboring wells as the inputs to predict the GWL of another well,
located in Kerman plain, Iran. The results showed that applying the GWLs of the current and one month before
oftnewelland the neighboring wells was the best input combination to predict GWL,
andtheANFISmodelsusingGaussianMFhadbetterresultscompared to theANNSs.

Shirmohammadi et al. (2013)applied system identification, time series, and ANFIS models to predict
monthly GWL in Mashhad plain, Iran.Theonlyinputvariableofthemodelswastheprecipitation.Iinthe ANFIS
models, they tested several MFssuchasTriangular,Gaussianand Bell-shaped functions. The results showed that
the Bell-shaped MF had the best performance, and the ANFIS model outperformed both time series and system
identificationmodels.

Emamgholizadeh et al. (2014)compared ANN and ANFIS in fore- casting of monthly GWL in Bastam
plain, Iran. They considered the rainfall recharge, irrigation returned flow and pumping rates from
waterwellsasinputdataandfoundthatANFISoutperformedthe ANN. The results showed that applying ANFIS with
diff erent structures had the most accuracy when it used withtrapezoidal MF.

Mirzavand et al. (2015) investigated the abilities of ANFIS and SVR in estimating monthly GWL
fluctuation in the Kashan plain, Iran, by using the inputs of stream flow, evaporation, spring discharge, aquifer
dischargeandrainfall. TheresultsindicatedthattheANFISmodelusing Bell-shaped MF performed better than the
SVR. Khaki et al. (2015)applied ANN and ANFIS to simulate monthly average GWL in the Langat Basin,
Malaysia. The GWL, rainfall, humidity, evaporation, minimum temperature and maximum temperature were
applied as the inputvariablesofthemodels.TheobtainedresultsoftheANFISmodels were superior to those of
ANNs, and in the ANFIS models the Bell- shapedMFoutperformedtheGaussianMF.Gongetal.(2015)testedthe
validityofANN,SVMandANFISinthepredictionofthemonthlyGWL for two wells near Lake Okeechobee in
Florida, United States. The precipitation,temperature,pastGWLsandlakelevelwereusedasinput data. The results
showed that the GWL predictions from ANFIS and SVMweremoreaccuratethanthatfromANN.

Results
ThereviewofcitedstudiesonANFISmodelingoftheGWLshowed that:
1) In the cited papers, applying ANFIS as an alternative approach to predict the GWL leads to more accurate
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results in comparison with the ANN. Since ANFIS integrates both neural networks and fuzzy logic principles, it
is more likely to deal with non-stationary time series moreeffectively.

2) In three studies (i.e., Shirmohammadi et al., 2013; Mirzavand et al.,2015; Khaki et al., 2015) the Bell-
shaped MF was the best in com- parison with other MFs, while in two studies (i.e., Kholghi andhosseini, 2009;
Jalalkamali et al., 2011) the Gaussian MF yielded higheraccuracy,andinthestudyofEmamgholizadehetal.(2014)
the Trapezoidal MF was the best in comparison of others. In the meanwhile, Gong et al. (2015) have not
mentioned anything about the used MF. Generally, there was not any exact method for choosing the MFs in the
reviewed papers, and instead, a trial-and- error procedure was used for finding an appropriate MF. So, use of
thoseMFswhichdonotcauseoverfittingandgiveleasterrorcanbe recommended.

Genetic PROGRAMMING (GP) for GWLmodeling
Introductory

The GP as a generalization of genetic algorithm (GA) is an evolu- tionary algorithm based on
biological evolution inspired by Darwinian theoriesofnaturalselectionandsurvivalofthefittest. TheGPconsiders an
initial population of randomly generated equations, which are achieved from the random variables, numbers and
functions. The function involves arithmetic operators (+, —, %<, <) and other math- ematical functions (e.g., sin,
cos, etc.) or user-defined expressions, which should be chosen based on some understanding of the process. The
initial population is then applied to an evolutionary process to evaluate the fitness of the evolved programs by
defining a fitness function. In forecasting problems the root mean squared error (RMSE) between forecasted and
observed data is often used as the fitness function. The programs that best fit the data are then selected to pro-
duce better program through two genetic operators: crossover and mutation. The evolution process is repeated
and driven towards tofind expressions which describe the data and give the best performance of themodel.

BIBLIOGRAPHICreview

Shirietal.(2013)investigatedtheabilitiesof GP,ANFIS,ANN,SVM and ARIMA techniques for daily GWL
forecasting in Korea. The GWL, rainfall and evapotranspiration data were used as the inputs of the
models.ForGPmodels,therootrelativesquarederrorwasemployedas the fitness function. The results showed that
GP models were superior compared to other models. Fallah-Mehdipour et al. (2013)compared the capability of
the GP and ANFIS to predict and simulate monthly GWLs in three wells in the Karaj plain of Iran. The
precipitation, eva- poration and GWLs were used as the inputs of the models. They have noted that the fitness
function of GP was considered an error criterion, but they have not mentioned the type of it. Results showed that
in the GPmodelstheaverageerrorswerelesscomparedtotheANFISmodels.

Results

Originally developed for optimization problems, the GP was ex- tended to solve forecasting problems
such as GWL forecasting. In this case, the minimum error (e.g. RMSE) between forecasted and observed GWLs
has been applied as the fitness function of the GP. Although, amongother Almethods,
theGPmaynotbethebestwaytoforecastthe GWL, in the two aforementioned studies, this model outperformed
other models. Similar to the ANN and ANFIS, in the reviewed GP pa- pers, the input parameters were chosen
based on a combination of empirical and trial-and-error analysis. The low number of papers on
GWLmodelingviaGPdemonstratestheneedtoinvestigatemoreabout application of GP and in GWLmodeling.

Support vector MACHINE (SVM)for GWL modeling
Introductory

The SVM is a statistical machine learning theory. It has not a priori determined structure, but the input
vectors supporting the model structure are selected through a model training process (Vapnik, 1998). This
machine learning method is based on the extension of the idea of identifying a hyper-plane that separates two
classes in classification. A SVM constructs hyper-planes in an infinite dimensional space, which can be used for
classification, regression, or other tasks. The mappings used by SVM schemes are designed to ensure that dot
products maybe computed easily in terms of the variables in the original space, by de- fining them in terms of a
kernel function selected to suit the problem. The SVM can also be used as a regression method. The support
vector regression (SVR) method uses the same principles as the SVM for classification, with only a few minor
differences. The SVRgeneral- izationperformancedependsonagoodsettingofsomeparameters and the kernel
function. The SVR parameters represent some constants like regularization constant and kernel function
constant, and control the prediction (regression) model complexity. The kernel function changes the
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dimensionality of the input space to perform the regression task with more confidence. A full mathematical
overview of SVM is pre- sented by Vapnik (1998). Originally developed for classification, it was
extendedtosolvepredictionproblems,andinthiscapacitywasusedin hydrology relatedtasks.

BIBLIOGRAPHICreview

Yoon et al. (2011) developed ANN and SVM models for predicting GWL fluctuations of two wells at a

coastal aquifer in South Korea, consideringasix-hourlytimestep.ThepastGWL,precipitationandtide level were
selected as the inputs of the models. It was found that the past GWL was the most effective input variable for
the study site, and tidelevelwasmoreeff ectivethanprecipitation. Theresultsshowedthat the performance of the
SVM was better than the ANN. Yoon et al.(2016)utilized a weighted error function approach to improve the
performance of ANN and SVM models for the prediction of dailyGWL in response to rainfall. The input
variables were GWL and rainfall data in South Korea. The comparison of the models showed that the re- cursive
prediction performance of the SVM was superior theANN.
Huang et al. (2017) used the chaos theory to select the best input lagsof GWL timeseries,
anddevelopedtheSVMandBP-ANNmodels. Usingtheparticleswarmoptimizationmethodtoobtaintheparameters of
SVM, the models were applied to predict the daily, weekly and monthly GWL in China. The chaotic SVM
model had higher accuracy than the linear SVM and chaotic BP-ANN models. Nie et al. (2017)employed
precipitation, evaporation, and temperature as the inputs of SVM and RBF-ANN models to forecast monthly
GWL in lJilinprovince, China. The SVM model was more accurate and had feweruncertainties
causedbyerrorsinthemeasurementsoftheinputsandoutputs.

Mukherjee and Ramachandran (2018) applied the GRACE satellite terrestrial water storage (TWS) data
along with meteorological vari- ables precipitation, min and max temperature, humidity and wind to predict
GWL with the SVR, ANN and linear regression models. The results showed that TWS is a highly significant
variable to modelGWL, and the SVR was the best model. Guzman et al. (2018) compared SVR andNARX-
ANNmodelsforGWLpredictionofanirrigationwelllocated in the southeastern USA. They evaluated the best
combination from three input variables, i.e., daily GWL, precipitation and evapo- transpiration data for each
model. The GWL + precipitation scenario provides the optimal combination for model inputs, and the SVR was
superior to the ANN. Tang et al. (2018) concluded that the least square SVM perform better than classical SVM
and some other Al models in GWL forecasting. The only input variable was the hourly GWL of four observation
wells located in northernUK.

Results

The SVMs/SVRs are powerful machine learning methods that have been developed and applied for
many classification/prediction pro- blems over past years. Although the number of published papers con-
sideringGWLmodelingviaSVMislow,howeveritshouldbenotedthat SVM has been used for predicting of many
time series for a myriad of practical applications in theworld.
In the SVM modeling, the appropriate selection of the kernel func- tion and parameter values is critical. In the
five of seven aforemen- tionedpapers,theRBFkernelfunctionwasselected,whereasinthetwo otherones
(i.e.,Yoonetal. (2011) andMukherjeeandRamachandran (2018)) the utilized kernel function was not mentioned.
Over period of years, the RBF function has become the choice of many researchers as the kernel function for
SVR because of its accuracy and reliable per- formance (Suryanarayana et al., 2014).

For selecting the optimum parameters of SVM model, most of the papers have employed a procedure
like trial-and-error, except Huanget al. (2017)that have been used the particle swarm optimization method to
obtain the optimum parameters of SVM.

Hybrid Al techniques for GWLmodeling
Introductory

Since it has been revealed that the Al models have some limitations withthenonlinearandnon-
stationaryprocesses,somehybridmodeling approaches which include certain data-preprocessing and/or combine
different Al techniques have been also developed in the recent years to increase the capabilities of the Al
methods. Combining different Al methods in different stages of the modeling, and applying efficient methods
for input data pre-processing make the developing of these models more effective. For example, the GP
technique can be used to optimize the Al input variables and/or Al regulation parameters. In another example,
the geostatistical techniques such as Kriging can be combined with the Al methods for spatiotemporal GWL
modeling. According to the capability of geostatistics tools in spatial estimation, hybrid Al-geostatistic models
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have been applied in some papers to use their potential for spatiotemporal simulation ofGWL.

The wavelet analysis is an example for the data pre-processing, which has been widely used in GWL
modeling. Wavelet analysis is applied for de-noising, compression and decomposition of input data
timeseries.Waveletisatime-dependentspectralanalysisthatunravels time series in the time-frequency space to
provide a time-scale de- scription of the processes and their relationships (Daubechies, 1990). The Wavelet
analysis can be performed continuously or discretely. The continuous wavelet transform (CWT) can operate at
every scale; but it requires a lot of computational time, and generates a large amount of data. In many studies the
discrete wavelet transform (DWT) was used, where only a subset of scales and positions are chosen to make the
calculations. In the wavelet-Al models cited in scientific papers, the decomposed sub-time series were used as
the inputs of Al models, in- steadofthemaintimeseries.Theschematicstructureofsomeofhybrid
AlmodelsforGWLmodelingisshowninFig.3.

BIBLIOGRAPHICreview

AfterwardstheAlmethodsweredevelopedforpredictionproblems, the researchers tried to combine
diff erent type of them to overcome the shortcomings and increase their accuracy. Almost since 2011, there has
been an interest in application of the wavelet analysis in combination with diff erent Al methods. Adamowski
and Chan (2011)used a Wa- velet-ANN model for GWL forecasting at two sites in Quebec, Canada.
Themonthlytotalprecipitation,averagetemperatureandaverageGWL were decomposed at two levels by wavelets
and imposed to the ANN. The model was found to provide more accurate GWL forecasts com- pared to the
ANN and ARIMA models. Nourani et al. (2011) presented an ANN-geostatistics methodology for
spatiotemporal prediction of GWL in Shabestar plain, which adjoins to Urmieh Lake as a coastal aquifer in Iran.
Monthly GWLs data from 11 piezometers, rainfall, and lakewaterlevelsweretheinputs ofANN.
TheANNwastrainedforeach piezometer to predict the GWL of the next month. Then Kriging was applied to the
outputs from ANN models in order to estimate GWL at any desired point in theplain.

Kisi and Shiri (2012)investigated the ability of a Wavelet-ANFIS model to perform one-, two- and
three-day-ahead GWL forecasting oftwowellslocatedinlllinoisState,USA,usingonlypastdailyGWLdata. They
found that excluding the detail coefficients from the inputs and using only approximation components
significantly increase the accu- racy of ANFIS models. The hybrid model outperformed ANFIS, particularly for
two- and three-day-ahead forecasts.

Moosavi et al. (2013a) applied a number of diff erent structures for ANN, ANFIS, Wavelet-ANN and
Wavelet-ANFIS models to evaluate their performances to forecast GWL with 1, 2, 3 and 4 months ahead
undertwocasestudiesinMashhadplain, Iran.ltwasdemonstratedthat wavelet transform can improve the accuracy of
forecasting. It has been alsoshownthattheforecastsmadebyWavelet-ANFISmodelsaremore accurate than those by
other models. They found that the decomposi- tion level in wavelet transform should be determined according to
the periodicity and seasonality of data series. Moosavi et al. (2013b)also investigated the optimum structures of
Wavelet-ANN and Wavelet- ANFISmodelsforGWL forecastinginthesamecasestudies. Theyused the optimization
Taguchi method to assess different factors aff ecting the performance of models. It was revealed that transfer
functions ofANN,membershipfunctiontypesofANFISandthemotherwavelettype are the most important factors.
Comparison of optimal models de- monstratedthebetterperformanceofWavelet-ANFIS.MaheswaranandKhosa
(2013) showed that wavelet based nonlinear as wavelet-Volterra model performed better than Wavelet-ANN
and wavelet-linear regres- sion models for GWL forecasting. The study area was northernSaanich Peninsula,
Canada, and the inputs of the models were the level five decomposed monthly average GWL timeseries.
Suryanarayana et al. (2014)predicted monthly GWL of three ob- servation wells in the city of Visakhapatnam,
India, using wavelet-SVR modeling. The monthly data of precipitation, maximum temperature, mean
temperature and GWL for the period 2001-2012 are used as the input variables. Results indicated that wavelet-
SVR model gives better accuracy compared with SVR, ANN and ARIMA models.
Heetal.(2014)linkedwaveletandfractaltheorymethodstoANNforGWL forecasting of three sites located in
Ganzhou region, northwest China. The fractal dimension was convenient for quantitatively describing
theirregularity orrandomnessoftimeseriesdata. Theresultsshowedthatthismodelis suitable for sites at which the
fractal dimension of the wavelet de- composition detail components is large. Tapoglou et al. (2014)com-
binedANN, fuzzylogicandKriginginordertosimulatethespatialandtemporaldistributionofGWLinanareaacrossthels
arRiverinBavaria, Germany. The daily data including the GWLs in 64 wells, the surface water elevation at five
observation points across the river, temperature andrain fall were used as input variables to
the64ANNs.Diff erentANN architectures and variogram models were tested together with the use or not of a
fuzzy logic system. The isocontour maps were presented for the hydraulic head. The best results were achieved
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with the use of the fuzzylogicsystemandbyutilizingthepower-lawvariogram.

Yang et al. (2015) developed a wavelet-ANN and an ITS model to predict GWL of as hallow
coastalaquiferinFujianprovince,China. The input was only the monthly GWL time series of two representative
wells. The wavelet-ANN models provided more accurate results com- pared to the ITS models. Khalil et al.
(2015)compared MLR, ANN, wavelet-MLR, wavelet-ANN, and a wavelet-ensemble ANN model for the
forecasting of GWLs as a result of recharge via tailings from an abandoned mine in Quebec, Canada. The
wavelet- ensemble ANN consisted of a group of wavelet-ANN members, where each of these members was
trained for the same problem, and then combined to produce the output. The daily tailing recharge, total
precipitation and mean air temperature were used as inputs, while the output was GWL for lead times of 1-day,
1-week and 1-month. The wavelet-ensemble ANN model performed best for each of the three lead times.
Nouraniet al. (2015) proposed a wavelet-entropy data pre-processing approach for ANN-based GWL modeling.
They used the SOM-based clustering technique to identify spatially homogeneous clusters of GWL data and the
wavelet transform to extract the non-stationary GWL, runoff and rainfall time series. The results indicated that
the SOM method de- creased the dimensionality of the input variables and the wavelet analysis increased the
performance of the ANN model. Jha and Sahoo(2015)developed five hybrid ANN-GA models for simulating
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Fig. 3. Schematic structure of some hybrid Al models for GWL modeling. a) Wavelet-Al model b) SOM-AI
model c) GP-Al model d) Al-Kriging model.

as rainfall, max and min temperature, river stage and GWL have been considered to simulate GWL at
17 sites. The inputs and parameters of theANNwereoptimizedusingGAoptimizationtechnique.TheGAwas
superior to the commonly used trial-and-error method for determining optimal ANN architecture andinputs.
Chang et al. (2016)combined the SOM, the Nonlinear Auto- regressive with Exogenous Inputs (NARX)
network and the kriging for predicting monthly GWL in Zhuoshui River basin, Taiwan, based onhydrologic data
such as rainfall, stream flow and GWL. The SOM was used to classify thes
patiotemporalpatternsofregional GWL,theNARXwasusedtopredictthemeanofregional GWL ,andthekrigingwasuse
dtointerpolatethepredictionsintofinergridsoflocations.Consequently the prediction of a GWL map was obtained.
Han et al. (2016) coupled SOM and a statistical method to predict spatiotemporal monthly GWL in an arid
irrigation district in the western Hexi Corridor, northwest China. The SOM was applied to identifys
patiallyhomogeneousclusters ofwells, and the GWLf ore castingwasperformedthroughdevelopinga stepwise
cluster multisite inference model with various predictors in- cluding climate conditions, well extractions, surface
runoff's, reservoir operations and GWL measurements at previous steps. Hosseini et al.(2016) combined ANN
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and ant colony optimization (ACO) to simulate the GWL in Shabestar plain, Iran. The back-propagation ANN
was uti- lized to reproduce GWL variations using the input variables including: rainfall, averagedis charge,
temperature,evaporation,andsomeannual  timeseries.  Then,ACOwasusedtooptimizeandfindinitialconnection
weights and biases of a BP algorithm during the training phase. They foundthatthehy brid model could
reduceovertraining.

Nourani and Mousavi (2016) presented a hybrid Wavelet-Al-mesh- less model for spatiotemporal
GWL modeling in Miandoab plain, Iran. InthiswayfirstlymonthlyGWLindiff erentwellswerede-noisedusing
threshold-basedwaveletmethodandtheimpactofde-noisedandnoisy data was compared in temporal GWL
modeling by ANN and ANFIS. Then,bothANNandANFISmodelswerecalibratedusingGWLdataof each well,
rainfall and runoff to predict the GWL at one month ahead. Finally, the simulated GWLs were considered as
interior conditions for the multi-quadric RBF based solve of governing partialdifferential equation of
groundwaterflowtoestimateGWLatanydesiredpointwithin the plain. The results showed that the wavelet de-
noising ap- proach can enhance the performance of the modeling.

Ebrahimi and Rajaee (2017)investigated the effect of wavelet analysis on the training of the ANN,
MLR and SVR approaches in si- mulating GWL. The only input variable was the monthly GWL data of
twowellsintheQomplain,Iran. Theresultsshowedthatforbothwells, the Meyer wavelet produced better results
compared to the other wa- velets,andthewavelet-MLRandwavelet-SVRwerethebestmodelsfor the wells 1 and 2
respectively. Barzegar et al. (2017) combined wavelet with ANN and group method of data handling (GMDH)
models for forecasting the monthly GWL in Azarbijan, Iran. The GWL time series were decomposed with
diff erent wavelets at two levels, and the step- wise selection was used to select appropriate lag times as the
inputs of the models. To combine the advantages of different wavelets, a least squares boosting algorithm was
applied. The boosting multi-wavelet- ANNmodelsprovidedthebestperformances.Wenetal.(2017)applied wavelet-
ANN with three diff erent input combinations, i.e., (1) GWL only, (2) climatic data, and (3) GWL and climatic
data to forecast the monthly GWL of two wells in Zhangye basin, China. The model with only GWL as its input
yielded the best performance for one-month forecasts. However for two- and three-monthly forecasts, the model
withGWLandclimaticdataasinputswassuperior.

Rakhshandehroo et al. (2018)used wavelet-ANN trained with im- proved harmony search algorithm to
forecast the long term daily GWL of two wells in southeast USA. The only input variable was the daily
GWL,andtheone-year-aheadpredictionwiththeproposedmodelwas acceptable. Yu et al. (2018)compared the
wavelet-ANN and wavelet- SVR models in forecasting of monthly GWL of 3 wells in northwest
China.Fourwaveletdecompositionlevelswereemployedtodecompose input time series discharge,
evapotranspiration and GWL. The results showedthatthewavelet-SVRperformedbetterthanwavelet-
ANN.ZareandKoch(2018)usedwavelet-ANFISmodelwithseveralcombinations
of GWLandprecipitationastheinputstosimulatemonthlyGWLinthe Miandarband plain, Iran. The results indicated
that using the Symlet mother wavelet with two decomposition levels outperformed other models.
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Fig. 4. Number of times various time steps have been used for GWL modeling.

Results

In the last years, development of hybrid modeling approaches is seen, and in particular, there has been
an increasing interest in wave- lets-Al approaches for GWL modeling. These studies have shown that the
hybrid/coupling models performed better than the regularmodels. As a downside, however, these models have
also been criticized on various aspects and, in particular, the risk posed by overtraining of the model and the
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difficulties of parameter estimation using heuristic methods (Maheswaran and Khosa, 2013). A review of the
various stu- dies on hybrid Al modeling of the GWL revealed the followingissues:

1) By using the hybrid models and in particular wavelet analysis to extract the input time series, a greater
understanding and ability to simulateGWLcanbeachieved.Theresultsofthestudiesexploredin this section have
revealed a higher degree of efficiency of hybrid modelscomparedwithsinglemodelsinaccuratelyforecastingGWL.
2) In the all reviewed wavelet-Al papers, the DWT has been appliedto decompose time series rather than
CWT. In addition to the simpli- city of using DWT, this can partly be due to the nature of GWLtime series,
because they are recorded discretely. Furthermore, the GWL islinkedwithseveralhydrologicalphenomena;
Thus,useofDWTat specific levels which likely refers to hourly, daily or monthly effects
appearstobemoreusefulthanapplicationofCWTwhichgenerates much more redundantinformation.
3) The more frequently mother wavelets used for GWLdecomposition are db2 and db4, which have been
considered as the appropriate mother wavelets. According to the Nourani et al. (2014), similarity
inshapebetweenthemotherwaveletandthetime-seriesisoftenthe best guideline in choosing a reliable mother
wavelet. Therefore, it can be an indication of a relative similarity between the general shapeof
GW.LtimeseriesandDaubechiesfamilywavelets.
4)  AccordingtothestudyofMaheswaranandKhosa(2012)inthefield of hydrological forecasting, some mother
wavelet forms that have acompact support showed better performance in the case of time series that have a short
memory with transient features. In contrast, mother wavelets with a wider support yielded better forecasting
efficiencies with regard to the time series that have long-term fea- tures. Therefore, in the case of GWL time
series, it does not seem that compact wavelets to be suitable for decomposition, because the GWL time series
have long-term features rather than transient fea- tures, and therefore the wavelets with a wider support are more
compatible with the timeseries.
5) In the aforementioned wavelet-based papers, five papers (Adamowski and Chan, 2011; Moosavi et al.,
2013a,b; Nourani et al., 2015; Ebrahimi and Rajaee, 2017) have used the decom- position level 2, two papers
(Suryanarayana et al., 2014; Wen et al., 2017) have used the decomposition level 4 and one paper (Maheswaran
and Khosa, 2013) has used the decomposition level 5as the optimum decomposition levels. In the meanwhile, in
KisiandShiri(2012),Yangetal.(2015)andRakhshandehrooetal.(2018)

In this section, some general results derived from the 67 reviewed papers such as the results related to
the considering time steps, input variables, data set size, data division, study areas and type of aquifers, etc. have
been mentioned and discussed.

Time stepselection

Inthecaseofutilizedtimesteps,themajorityofAlmodelsreviewed in this study have been considered the
monthly time steps for GWL modeling. The distribution of the utilized time steps is given in Fig. 4. As can be
seen, the monthly time step was used in 46 of the 67 papers reviewed, followed by daily (11 papers), daily (4
papers) and weekly(4 papers) time steps. A number of different time steps (i.e., 6-hourly, multi-
monthlyandannually)wereusedinsomeofthepapersreviewed as well. The high use of the monthly time steps can
be related to the highavailabilityofmonthlyrecordedGWL datacomparedtoothertime steps. In the most parts of the
world, the GWLs do not have often sig- nificanthourly,dailyorevenweeklyvariations;howeverinsomeareas like
coastal aquifers (Yoon et al., 2011; Taormina et al., 2012) or areas near the lake of dams (Lee et al., 2018), the
GWLs are under influence oftidal/lakeeff ects,andmayhavehourlyordailyvariations.

Fig.5showstheinputvariablesthathavebeenemployedinAIGWLmodelingaccordingtothereviewedpapers.
FromFig.5,itcanbefound that the past steps of the GWL time series is the most frequently used input variable for
Al models to forecast the GWL. Among 67 papers,52 papers have been employed the GWL as an input variable.
Even 12 papers have been considered the GWL as a single auto-correlatedinput variable without any other
exogenous input variable. As well as the GWL, the precipitation has been frequently used (48 times) as an input
variable. Furthermore, some hydrological time series such as tem- perature, river discharge (surface runoff),
evapotranspiration, surface water (lake) level, pumping rates (extraction from wells) andhumidity
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Fig. 5. The input variables that have been employed for AI-GWL modeling.

havebeenalsousedastheinputvariablesinthereviewedpapers.Other employed input variables such as
irrigation patterns, population, day number, seasonal dummy variables, tree-rings, etc. have been used toa lesser
extent in the reviewed papers, and it seems that some of them cannot be easily accommodated at the stage of
input consideration. Although in the stage of input consideration some of the hydrological time series have been
used more than the others, however it should be noted that the input data selection has been mostly based on data
availability in the study area rather than a physical analysis for the required data. In the meanwhile, this cannot
be considered as aweakness of these studies because in many regions data is limited, and also it is the nature of
Al models that they can work with any data. However it is better that a statistical analysis and in particular a
correlationanalysisbedonewithdifferentdatabeforeemployingthemformodelinginordertoobtainsuitableinputpattern
forAlmodels.

DATA setsize

According to the Table 1, the number of total sample data sets ap- plied for GWL modeling varies from
23 sets (Banerjee et al., 2009) to 23,850 sets (Taormina et al., 2012). Generally the more samples especially for
training can ensure better performance of model giving abetter chance for locating global minimum of the error
function, pro- vided that an overtraining does not happen during training. However there are some cases that we
may not be able to even collect 40samples for training the model like the data of annual tree-rings in Gholamiet
al., (2015). The quality of the available data and the relevance of the input data with the desired output are also
important since a large amount of irrelevant data can hinder the model performance by con- fusing the training
process (Tsanis et al., 2014). There therefore has to be a balance between the quantity of data and the relevancy
to the output.

In the all 67 reviewed papers there was not any fixed rule that say how to get an optimum data set size
required for Al modeling. Itseems that considering the available data, experimental or perhaps trial-and-
errortoolswereusedhere.FromTablelitcanbeseenthatthemajority of studies have been applied a data set size
between 100 and 200 sets, and perhaps this can be considered as a suitable data set size. In the meanwhile it can
be found that Al models are capable to deal with different size of data set, but there was not any certain
comment in the reviewed papers about that in each sample size (i.e. big or small) what should we do for
optimizing the model performance (e.g. which training algorithm is better for small sample size in ANN?). It
seems trial-and-error procedures have been usedhere.

DATAdivision

Inthecaseofdatadivisionfortraining,validationandtestingtasks, there was not a specific rule in the
reviewed papers which explain how to consider an optimum amount for each sub-data set. In some of the
reviewed papers, the total data set were divided into three parts and in some others into two parts (Fig. 6). In the
three part data division, the first part was used as a training or calibration set; the second part as a
validationsettoascertainthatthemodelisgeneralizingandtostopthe training before overfitting, and the third part for
a testing of the model in the prediction stage. The names of these three parts, i.e., training, validation and test
parts, of course, may be diff erent in some papers. For example in Wunsch et al. (2018), the word “validation”
has been used for “testing” set and vice versa. But according to the reviewed papers, two parts data division i.e.,
using only the training and testing sets is also acceptable in the modeling of GWL time series, considering the
fact that some researchers do not mention the validation step. As canbeseenfrom
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Fig.6mostofpapershaveusedtwopartsdatadivision (training and testing sets), while some papers have included
the vali- dationset,too.Among46papersthathaveusedtwopartsdatadivision, the training-testing sets respectively
vary from 56% to 44% (Juan etal.,2015) to 90%-10% (Maheswaran and Khosa, 2013; Khalil et al., 2015) of
the total data with an average of approximately 70%-30%. In the remaining 20 papers that have added the
validation set, the training, validation and testing sets are averagely 60%, 18% and 22% of total data,
respectively. It should be noted that in Banerjee et al., (2009)there was not any explanation about the validation
or testing sets, and the performance criteria has been onIy mentioned for the trainingdata.
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Fig. 7. Number of published papers with respect to the countries where the study areas are located.

Fig. 7shows the number of reviewed papers with respect to the countries where the study areas are
located. A large number of the study areas are located in Iran (19 out of 67 cases). This point maybe shows the
interest of Iranian researchers in this field, but it can also be duetothearidity/semi-
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aridityofregionslikelran,suchthatthesurface water resources are low and the groundwater is the most available
waterresource,andthereforetheGWL dataaremoreavailablethanthe surface water data. China with 11 and India
with 9 case studies are placed in the next categories. In this regard, rest of the world can also be seen from the
Fig. 7. It should be noted that the types of aquifers under study, i.e., whether they were confined, unconfined,
karstic, sandy, etc. were briefly explained in the most papers. According to the descriptions about the study areas
in the reviewed papers, the most of aquifers were unconfined with alluvial materials like sand, silt, clay, gravel,
etc. and only a few of them were semi-confined or karstic, chalky, coastal, etc. It is known that the black-box Al
techniques are useful for prediction and forecasting, but they are not built using in- sights on the physical
processes involved. In this type of modeling, the knowledge about the underlying mechanisms is not necessary
and the main purpose is obtaining accurateforecasts.

Used SOFTWAREPROGRAMS

Morethanhalfofthepapersreviewedinthisstudyhavementioned the software programs used for Al
modeling, while the rest have pre- ferred not to mention the used software program. Fig. 8 shows number of
times that different software programs were used to develop ANN, ANFIS, GP
andSVMmodelsforGWLforecasting.Itshouldbenotedthat in Fig. 8, the hybrid models are also considered. As can
be seen, the MATLAB is the most used software program. The MATLAB software program has different Al
toolboxes that allow the user to easily apply them for the desired purpose with the least needs for coding. Other
software programs have been also used. For example the NeuroSolu- tions (Mohammadi, 2008; Jha and Sahoo
(2015); Gholami et al., 2015), Qnet (Emamgholizadeh et al., 2014) and R (Mukherjee andRamachandran, 2018)
software programs have been used in somecases for developing the ANN. Even the programming languages
such as Vi- sual Basic (Tapoglou et al., 2014) and C (Yoon et al., 2011; Shiri et al.,2013) have been used in
several papers. The GeneXpro is a software program in the field of GP and evolutionary computation that has
been used by Shiri et al. (2013). Details regarding these software programs can be found on the web, and we do
not discuss about them here. Al- though many papers have not mentioned the used software, it seems
thattheM ATLABsoftwareprogramisagoodchoicefordevelopmentof the Almodels.

IncorrectdevelopmentofAlmodelsforGWLFORECASTING

TheincorrectdevelopmentofAlmodelsforGWLforecastingcan be occurred in different stages of the
modeling. It may be occurred during the input data consideration. If the data are insufficient, incorrect or
irrelevant, we should not expect the model to have correct forecasts. When importing the inputs to the model, it
is also important whether the inputs are average or related to a specific time. For example, in the monthly time
steps, it is important to know whether the input data are relatedtothemonthlyaverageortoaspecificday

whether they are recorded in the same day of each month or not (i.e., whether the record period is 30
days or longer or shorter). Use of too many inputs is also caused by input redundancy, where they may
provideredundantinformation,andcauseoverfitting,andthereforethe real-world forecasted GWL to be incorrect.
The incorrect development canalsobeduringthedatadivisionintraining,validationandtesting sub-sets, when the
data have not been appropriately divided. The training,validationandtestingsub-setsshouldhavethesamestatistical
properties in order to develop the best possible model (Maier et al.,.2010). A number of best ways for
considering the input data, and input datadivisioncanbefoundinMaieretal.(2010).
One of the most common mistakes occurs when developing hybrid
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Fig. 8. Number of times diff erent software programs have been used to develop ANN, ANFIS, GP and SVM
models for GWL forecasting.

waveletAlmodels.Somerecentwaveletbasedhydrological(includingGWL)forecastingmodelshavebeenincorrectlydeel
opedandcannotproperlybeusedforrealworldforecastingproblems(QuiltyandAdamowski,2018).AccordingtotheQuilty
andAdamowski(2018),theincorrectdevelopmentofwaveletbasedforecastingmodelsoccursduringwaveletdecompositi
onandasaresultimportserrorintothemodelinputs. Theoriginofthiserrorisduetotheboundaryconditionthatislinkedto  the
waveletdecompositioninthreemainissues,i.e.,usingfuturedata,inappropriatelyselectingdecompositionlevelsandwavel
etfilters,andnotproperlypartitioningtraining,validationandtestingdata. Thefuturedataissueoccurswhenagivenwaveletr
equiresdatafromthefutureofthetimeseriestocalculateawaveletorscalingcoeffi cientinthepresent.Forsolvingthisproble
m,thecausalwaveletalgorithmssuchasatrousandmaximaloverlapDWTshouldbeusedsincetheydonotusefuturedata.lnad
itiontothenotusingthefuturedata,thecausalalgorithmsreducethenumberofwaveletandscalingcoeffi cientsaff ectedbyth
eboundarycondition,whichmustberemovedfromtheinputsubtimeseriestohavearealworldforecastingmodel. Thepartitio
ningissueisalsosolvedwhenusingcausalwaveletalgorithms,butthewaveletmustbeappliedtothetesting/predictingsetoner
ecordatatime,andthentheforecastmustbecalculatedthroughthemodelforeachtesting/predictingrecordandsoon(Quiltya
ndAdamowski,2018).

In the current review study several Al methods for GWL modeling were investigated by surveying the
recent published researches in this field. Here, one of the important issues is exploring which Al method
worksbetterandcanbestsimulatetheGWL. Itseemsthattheanswerto this question can be different in different
studies. According to the Table 1, among 67 papers, the ANN, ANFIS, GP, and SVM were re- spectively
declared as the most appropriate models by 28, 6, 2, and 7 papers; while 17 papers used hybrid wavelet-Al
models and 7 papers appliedotherhybrid Almodels,andreportedthathybridmodelsledto better modeling. It appears
that in the last few years more attentionhas beenpaidtoapplyhybridmodels,sothatapplicationofhybridmodels
leadstobetterresultsincomparisonwithsingleAlmodels.Inparticular the pre-processing of input data by common
tools such as wavelet analysis has frequently been used in this area to achieve better mod- elingperformance.

111.Conclusions andrecommendations

The Al methods have been used for GWL modeling as well asother hydrological and environmental
modeling. In this study, 67 papers dealingwithAlmethodsinGWLmodelingwhichwerepublishedin29 international
journals from 2001 to 2018 were reviewed. From these papers it was found that Al methods can successfully be
used to simu- late and predict the GWL time series in diff erent aquifers. This kind of modeling is based on an
Al eff ort to find natural relationshipsbetween

GWL and diff erent hydrological variables  without  the need for con-
structinganyconceptualmodel. TheAlmodelscanbeusefulwhenitis difficult to build an adequate knowledge driven
simulation model due to the lack of the ability to satisfactorily construct a mathematical/ physical model of the
underlying processes. These models haveseveral key stages including input data consideration, input data
division, regulation of the model features, training, testing, etc. which if all the stagescarefully
bedeveloped,itisexpectedthatthemodelperformance to be good. However, it should be noted that there was not a
fixed rule for these stages, such that diff erent studies performed each stage based on an empirical manner and/or
trial-and-error procedure considering available data and existing conditions. The obtained results from this
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review study that were embedded in two separated parts (i.e., the re- sults of each Al method and the general
results and discussion) can providemanyguidelinesforresearcherstoperformsimilarworksinthe related field,
develop  innovative  methods and improve the quality of modeling .Forthispurpose,
thefollowingrecommendationscanalsobe suggested:

1) The Al methods can be linked to conceptual-numerical modelssuch asMODFLOW to
developintegratedmodularmodelssuchthateach method covers the weak points of the other method. For example,
if anAlmodelgeneratesaccurateGWL forecastsinaspecialaquifer, it can be used to prepare and complete GWL
data required for MODFLOWastheinput.AccordingtoMohammadi(2008)the ANNs needed less input data and
took less time to run, compared to MODFLOW, therefore using ANNSs (and other Al methods) can de- crease
the computations of MODFLOW which are very time-con- suming. In another example the GWL data sets
estimated by MOD- FLOW can be used to train Al models, if there was not enough real data.

2) Moreattentionshouldbegiveninthestageofinputconsideration in order to select appropriate input variables and
lag times. In the re- viewedpapers,theinputvariableswereoftenselectedbasedondata availability or using simple
user-defined relationships. More analy- tical methods or model-based approaches can be applied to de- termine
input  significance, as suggested by Wu et al. (2014). In particular, utilizing the
GW.Ltimeseriesasthemostwidelyusedand most important input variable for Al GWL forecasting, should bemore
investigated. The GWL fluctuations provide a direct measure of the impact of groundwater development, and
important in- formation about the aquifer dynamics is embedded in GWL time series, so it can be said that the
future of GWL is predictable form the past GWL. Furthermore, in the stage of input consideration, the non-
causal wavelets such as A trous and maximal overlap DWT can be explored to unravel the component features of
different input variables in order to determine the lags, correlation and interaction between the hydrological
variables andGWL.

3) Regarding different Al methods to simulate the GWL, it can be said that it is not practically possible to
recommend one particular type of Al model for a given problem. However it is clear that a hybrid/ coupled
model likely perform better than a single Al model. Different types of Al techniques can be tested at the
different stages of the GWL modeling to select the best Al method in each stage and
thencombinethemtohaveanoptimummodelingperformance.

4) In the wavelet decomposition of the GWL, border effects as well asthe caution of causality which occurs in
the beginning and end of the decomposed sub-time series, is an area that has received a little
attentioninthemostpaperswhichhaveusedwavelet- Almodelsfor GWL modeling, so this topic can be raised for the
new researches. The decomposition of the total data set at once or each sub-data set (i.e., training, validation and
testing sets) separately, and the ways to prepare the decomposed sub-time series for applying them asthe
modelinputisaninterestingsubjectdeservingfurtherinvestigation.

5) According to the Quilty and Adamowski (2018), some wavelet- basedhydrological models have
beenincorrectlydeveloped,andthe solution is the use of non-causal wavelet algorithms such as Atrous
andmaximaloverlapDWTalgorithms.Sincethishasnotbeendone so far in GWL forecasting, the use of these
wavelet algorithms should be addressed in a newstudy.
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