Linear Model for Turning Al6061 using Least Absolute Shrinkage and Selection Operator (Lasso)

*S Gajanana¹, B SureshKumar Reddy², A Krishnaiah³

^{1,2}(Department of Mechanical Engineering, MVSR Engineering College, India) ³(Department of Mechanical Engineering, CoE, Osmania University, India) Corresponding Author: *S Gajanana

Abstract: Machining Aluminium to produce low cost and high quality products is the order of the day and the same has seen intense research over the years. Formation of built-up edge has an opposing effect on quality of the workpiece and it can be avoided by careful tuning of the machining parameters. This paper focuses on the optimisation of process parameters such as speed, feed, and the depth of cut in order to minimize the cutting forces and maximise the surface finish of the work piece. A full-factorial approach was used to conduct experimentation and a mathematical model was developed using Least Absolute Shrinkage and Selection Operator to understand the effect of the mentioned process parameters on the required target variables. **Keywords:** Al6061, Design of Experiments, Lasso, Cutting Force, Surface finish.

Date of Submission: 05-07-2017Date of acceptance: 20-07-2017

I. Introduction

Modern machining strives to high quality and high quality while dealing with surface finish and dimensional accuracy. The quality of a surface is a significant factor in estimating the productivity of machine tool and machined parts while the surface roughness of machined parts has critical effects on some functional attributes of parts, such as, contact causing surface friction, wearing, light reflection, ability of distributing, and. load bearing capacity.

Kannan Nair M R and ShyamSundar^[1] experimented with turning operations along with finite thermal analysis to understand that the cutting speed was main variable affecting the chip-tool interface temperature. SohailAkram^[2] determined the sensitivity of residual stresses to cutting speed and feed rate using finite element method. The simulation results showed that residual stresses were insensitive to changes in cutting speed, however, residual stresses were clearly affected by a change in feed rate NitinSawarkar&Ghanshyam^[3] concluded that graphical analysis of residual stress vs machining parameters can be done, from which decision about selection of optimum machining process, to improve component life can be made. Robert Tibshirani^[4] introduced Least Absolute Shrinkage and Selection Operator (Lasso) to improve the prediction accuracy and interpretability of regression models using feature selection. The regression model was generated using Lasso and a semi-empirical formula was developed that represented the relationship between the process parameters and the output variables.

II. Experimental Methodology

2.1 Design of Experiments

Three process parameters with two levels are taken into consideration while performing the experiment and are shown in table 1.A two level full factorial design of experiments was adopted for calculating the main and the interaction effects of the three factors at two levels; 2^3 =8 experiments were conducted to fit an equation. The design plan with high and low limits as indicated is utilized looking into practical considerations of the turning operation and are tabulated in table 1.

Table 1 Trocess 1 arameters 7 and Levels										
Factors	Unita	Designation	Test	levels	Avorago	Variation				
Factors	Units	Designation	Low	High	Average	interval				
Speed	rpm	N	715	1210	960	245				
Feed	mm/rev	f	0.1	0.2	0.15	0.05				
Depth of Cut	mm	d	0.1	1	0.55	0.45				

 Table 1 – Process Parameters And Levels

Table 2 – Design Wattix For Experimentation									
Trial No.	1	2	3	4	5	6	7	8	
Speed (rpm)	715	1210	715	1210	715	1210	715	1210	
Feed (mm/rev)	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.2	
Depth of Cut (mm)	0.1	0.1	0.1	0.1	1	1	1	1	

Table 2 – Design Matrix For Experimentation

2.2 Experimentation

F

Al6061 work piece is obtained from Die casting process. From the acceptable range of values, a specimen with the highest yield strength was chosen by using Taguchi L8 array and the same is tabulated in table 3.

Table 3 – Optimum Composition Of Al6061									
Component	Component Aluminium Magnesium Silicon Iron Copper Zinc Manganese Chromium								
Percentage	98.46	0.8	0.4	0.05	0.15	0.05	0.05	0.04	

Experimentation is carried out on Hindustan Machine Tool HMT NH 22 (Fig. 2) using HSS single point cutting tool according to the design matrix.

Fig. 1 – A: Casting Process, B: Casting,

. 2 – Experimental Setupc: Finished Workpiece, D: Workpiece After Machining

The cutting forces are measured during the experimentation using a piezoelectric dynamometer and the surface finish is measured using TALYSURF (Fig. 3).

Fig. 3 – measurement of surface finish using talysurf

2.3 Regression Analysis

The data from the design matrix along with the observations made during the experimentation were taken as the training data to perform regression analysis using Lasso. Least Absolute Shrinkage and Selection Operator (Lasso) is a sparsity operator that performs regularised regression with an L1 norm penalty. Lasso's ability to perform subset selection relies on the form of the constraint and has a variety of interpretations including in terms of geometry, Bayesian statistics, and convex analysis. It minimises the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint, it tends to produce some coefficients that are exactly zero and hence gives interpretable models. It is preferred over ordinary least squares (OLS)^[5] as it offers better bias and a lower variance. Its ability to obtain sparse coefficients makes it more suitable over Ridge Regression^[6], which performs regression using an L2 norm penalty.

The variance or the cost function used to perform Lasso regression is outlined below:

$$\arg\min\left\{\frac{1}{N} \parallel y - X\beta \parallel^2\right\} \text{ subject to } \parallel \beta \parallel_1 \leq t \qquad -(1)$$

$$t = regularization \text{ parameter}$$

$$\beta = Coefficients$$

$$y = output$$

$$X = Input$$

The same is written in the Lagrangian form as:

$$\min\left\{\frac{1}{N}\sum_{i=1}^{N}\left\{y_{i} - \sum_{j=0}^{M}w_{j}x_{ij}\right\}^{2} + \lambda\sum_{j=0}^{M}|w_{j}|\right\} - (2)$$
$$N = Number of samples$$

 $y_i = Response$

$$x_{ij} = Input \ parameters$$

$$w_i = Coefficients$$

The value of λ determines the amount of regularisation and its behaviour is outlined below:

$$\begin{array}{ll} \lambda = 0 & (Same \ coefficients \ as \ OLS) \\ \lambda = \infty & (All \ coefficients \ are \ reduced \ to \ zero) \\ 0 < \lambda < \infty & (Coefficients \ between \ zero \ and \ that \ of \ OLS) \end{array}$$

The model is validated using various metrics that include Coefficient of Determination^[7], Median Absolute Deviation^[8], and Mean Square Error. The regression analysis using Lasso is performed in Python 3.6.1 with Numpy, Pandas, Scikit-Learn, and Matplotlib libraries. The following code shows the general Lasso Class in Python using Scikit-Learn to generate the regression coefficients and the intercept.

Fits the training data using LASSO
X – Input parameters
y – Response
alpha – Regularization parameter
classLinearModel():

def __init__(self, X, y, alpha): self.X = X self.y = y self.alpha = alpha def lasso(X, y, alpha): clf = linear_model.Lasso(alpha = alpha) clf.fit(X, y) pred = clf.predict(X) returnclf.coef_, clf.intercept_, pred

III. Results And Conclusions

The observations made for the trials during the experimentation are tabulated in table 2 and the dynamometer readings for cutting forces and surface finish readings from Talysurf are shown in Fig. 4.

	Trial Number	Resultant Force (N)		Surface Roughne			
	1	50.33	50.33				
	2	49.89	49.89		1.079		
	3	70.26	70.26		4.773		
	4	/8.88		5.565			
	5	203.82		9.873			
	7	213.58		12.12			
	8	463.23		4.997			
		•					
Material: Al60 Tool: Singi vc = m/min n = 715 rpm	61_3 le Point HSS Tool 12.5 x 12.5mm f = 0.1 mm/rev vf = - mm/min	ap = mm ae = 0.1 mm	Material: Tool: vc = - m/mir n = 1210 rp	A6061_12 Single Point HSS Tool 12.5 x 12.5mm n f=0.1 mm/rev m vf = - mm/min	ap = mm ae = 0.1 mm		
Measuring Data	spectra and Cutting Farce Fa (N) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Experiment Cutting Farme Fr. 19. A second of the second	Measuring D	MAX Experiment Cutting Force Fx (P) Experiment Cutting Force Fx (P) Fx (P) Control (1) Fx (P) Fx (P) Trapit Control (1) Fx (P)	Experiment Cutting Fo	Pre Py Di	
		Trial - 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Experiment Cutting Form Fr. 29.		Trial - 2	
	v		Material	46061 0			
Material: A606' Tool: Single vc = - m/min n = 715 rpm Measuring Data	1_13 Point HSS Tool 12.5 x 12.5mm f = 0.2 mm/rev vf = - mm/min	ap = mm ae = 0.1 mm	Tool: vc = - m/m n = 1210 i Measuring	Single Point HSS Tool 12.5 x 12.5mm in f = 0.2 mm/rev rpm vf = - mm/min Data	ap = mm ae = 0.1 mm		
Exp	Image: Cutting Force Fe (b) Image: Cutting Force Fe (b) Image: Cutting Force Fe (b) The Maximum Cutting Force Cope No. 1 The Maximum Cutting Force Fe (b)	Experiments Cutting Form Pry N 1410 Pry August 1410 Print Pry N 1410 Pry August 1410 Print Pry Print	571 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Experiment Cutting Force Fr. N. H 30 April 10 A	Experiment Cutting F	Fy Pr Cyse No: 1 Cyse No: 1	
50 30 30 40 10 10 10 10 10 10 10 10 10 1	Image: Section of Cutoffing Force For (P) Image: Section of Cutoffing Force For (P) Image: Section of Cutoffing Force For (P) Trank M Section of Cutoffing Force Trank M Cype No: 1	Trial - 3	第二日本 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Equations Cutting Fores F1 N		Trial - 4	
Material: Al600 Tool: Singl vc = m/min n = 715 rpm	51_14 e Point HSS Tool 12.5 x 12.5mm f = 0.1 mm/rev v1 = − mm/min	ap = mm ae = 1.0 mm	Materi: Tool: vc = n = 12	al: A6051_11 Single Point HSS Tool 12.5 x 12.5mm mimin f = 0.1 mm/rei 10 rpm vf = - mm/rein	ap = mm ae = 1.0 mm		
Measuring Data	pertinent Cutting Force Fully	Experiment Cutiling Parce Py 20 Part of 22 A A A A A A A A A A A A A A A A A A	55 82 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 4 9 9 9 4 9	Equivalence Cuting Farmer Faces	Experiment Cutting For	Pype No. 1	
125 00 00 00 00 00 00 00 00 00 00 00 00 00	performed Cutting Force Fails	Trial - 5	200 100 000 000 000 000 000 000 000 000000			Thial - 6	
Material: AIRORS	7	11	Material	Al6061 2			
Tool: Single vc = m/min n = 715 rpm	Point HSS Tool 12.5 x 12.5mm f = 0.2 mm/rev vf = - mm/min	ap = mm ae = 1.0 mm	Tool: vc = m/n n = 1210	Single Point HSS Tool 12.5 x 12.5mm nin f = 0.2 mm/rev rpm vf = - mm/min	ap = mm ae = 1.0 mm		
Measuring Data	Instructed Cutiling Force PL (2) 100 Implicit Open to: 1 100 The to: Open to: 1 110	Experiment Cutting Force Py N Py N Table States and the states of the	Measuring	Data Equivine Cutting Force Fr.20 Force Fo	205 205 205 205 205 205 205 205 205 205	9 Fy 20 50 Yes Cysterie: 1 2014-00 Trays - 2015-00	
100 -000 -000 -000 -000 -000 -000 -000	entiment Cutting Force The M The M Cype No: 1 The M Cype No: 1 The M Cype No: 1 The M Cype No: 1	marghalfanna	400 300 200 - 100 - 400 70 M Conserver	Experiment Cutting Force Point		Trial ©	
		Trial - 7	<u> </u>	1 6 **		111al - 8	
	Fig. 4 –	cutting forces and sur	face ro	oughness for all	trials		

Table 4 - Observations

3.1 Regression model for Resultant Cutting Force

The coefficients of the linear model for cutting force are recorded in table5.

Table 5 – Regression Coefficients For Cutting Force									
Variable	Intercept	N (Speed)	f (Feed)	d (DoC)	Nf	Nd	fd	Nfd	
Coefficient	1.73	0.017	0	0	0.086	-0.028	0	1.73	

The final equation:

Y = 7.788 + 0.017(N) + 0.086(Nf) - 0.028(Nd) + 1.73(Nfd)Validation metrics: Coefficient of Determination: 0.97 Median Absolute Error: 14.382 Mean Square Error: 496.372

3.2 Regression model for Surface Finish

The coefficients of linear model for the surface finish of the material are recorded in table 6.

Table 6 – Regression Coefficients For Surface Finish										
Variable	Intercept	N (Speed)	f (Feed)	d (DoC)	Nf	Nd	fd	Nfd		
1	6 602	0.01	0	5 (5	ECE	0.042	0.01	0		

Variable	Intercept	N (Speed)	f (Feed)	d (DoC)	Nf	Nd	fd	Nfd
Coefficient	6.693	-0.01	0	5.65	5.65	0.043	0.01	0

The final equation:

Y = 6.693 - 0.01(N) + 5.65(d) + 0.043(Nd) + 0.01(Nf) - 0.067(Nfd)Validation metrics: Coefficient of Determination: 0.85 Median Absolute Error: 0.98 Mean Square Error: 2.1

3.3 Variation of responses with respect to feed

An increase in feed showed an increase in resultant force (Fig. 5). However, there was a conflicting result with surface finish (Fig. 6).

Higher speeds increased the resultant force on the work piece (Fig. 7). However, it had a negative impact on the surface finish of the material (Fig. 8).

3.5 Variation of responses with respect to depth of cut

There was an increase in the resultant force with an increase in the depth of the cut (Fig. 9) but a clear relationship could not be obtained in the case of surface finish (Fig. 10).

References

- [1]. Kannan Nair M R , ShyamSundar V.2015, Optimization Of Tool Chip Contact Area In Turning Operation Using Finite Element Thermal Analysis, International Journal of advanced research in science and Engineering, Vol No 4, Issue 11, Nov 2015.
- [2]. SohailAkram, Syed Husain Imran Jaffery, Mushtaq Khan, AamirMubashar, and Liaqat Ali.2015, A Numerical Investigation of Effects of Cutting Velocity and Feed Rate on Residual Stresses in Aluminum Alloy Al-6061, International Journal of Materials, Mechanics and Manufacturing, Vol. 3, No. 1, February 2015.
- [3]. NitinSawarkar, Ghanshyam Boob.2014, Finite Element based Simulation of Orthogonal Cutting Process to Determine Residual Stress Induced, International Journal of Computer Applications (0975 8887).
- [4]. Robert Tibshirani, Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, Series B (Methodological), Volume 58, Issue 1 (1996), 267-288.
- [5]. C A Cantrell, Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, *Atmos. Chem. Phys. Vol. 8, 2008.*
- [6]. Donald W Marquardt and Ronald D Snee, Ridge Regression in Practice, The American Statistician, Vol. 29, No. 1, 1975.
- [7]. N J D Nagelkerke, A note on a general definition of the coefficient of determination, Biometrika, Vol. 78, No. 3, 1991, 691-692.
- [8]. Christophe Leys, Christophe Ley, Oliver Klein, Philippe Bernard, Laurent Licata, "Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median", Journal of Experimental Social Psychology, 2013.

- [9]. Thamizhmanii S. Saparudin S. and Hasan S., (2007), Analysis of Surface Roughness by Using Taguchi Method, Achievements in Materials and Manufacturing Engineering, Volume 20, Issue 1-2, pp.
- [10]. Singh H. and Kumar P., (2006), Optimizing Feed Force for Turned Parts through the Taguchi Technique, Sadhana, Volume 31, Number 6, pp. 671–681.
- [11]. Lin W. S., Lee B. Y., Wu C. L., (2001), Modelling the surface roughness and cutting force for turning, Journal of Materials Processing Technology, Volume 108, pp. 286-293.
- [12]. ASM Engineered Materials Handbook, Engineering Plastics (1989). ASM International Metals Park, OH 44037, USA.
- [13]. ASM Metals Handbook, 10th edition, Vol. 1 (1990), ASM International, Metals Park, Cleveland, Ohio, USA. Authoritative reference work for North American irons and steels.
- [14]. Srikanth T. and Kamala V. (2008), A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning IJCSNS, International Journal of Computer Science and Network Security, Volume 8 Number 6, pp. 189-193.
- [15]. Thamma R., (2008), Comparison between Multiple Regression Models to Study Effect of Turning Parameters on the Surface Roughness. Proceedings of the 2008 96IAJC-IJME International Conference, ISBN 978-1-60643-379-9, Paper 133, ENG 103 pp. 1-12, 503-505.

International Journal of Engineering Science Invention (IJESI) is UGC approved Journal with Sl. No. 3822, Journal no. 43302.

*S Gajanana " Linear Model for Turning Al6061 using Least Absolute Shrinkage and Selection Operator (Lasso)." International Journal of Engineering Science Invention (IJESI) 6.7 (2017): 25-31.