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Abstract: The method of constructing wave-free potentials in a systematic manner for a number of situations 

such as two-dimensional non-oblique and oblique waves, three dimensional waves in a fluid with free surface 

condition with higher order partial derivative are presented here. In particular, these are obtained taking into 

account of the effect of the presence of free surface, surface tension at the free surface and in the presence of an 

ice-cover modelled as thin elastic plate. 
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I. Introduction 
Problems involving generation or scattering of surface water waves by a body of any geometrical 

configuration present in water are of immense importance in ocean related industry and are generally investigated 

mathematically assuming linear theory. The problem of heaving motion of a long, horizontal circular cylinder on 

the surface of water was investigated by Ursell (1949) using the method of multipole expansion of the time-

harmonic stream function. The corresponding velocity potential also has a similar expansion. Infact, for an 

infinitely long horizontal cylinder of arbitrary cross section floating on the surface of water, the potential function 

in general can be expressed in terms of a regular wave, a wave source, a dipole and wave-free potentials (Ursell 

(1968), Athanassonlis (1984)).The wave-free potentials are singular at some point and tend to zero rapidly at 

infinity. Obviously these satisfy the free-surface condition. Expansions in terms of the wave source and an infinite 

set of wave-free potentials were introduced for the three-dimensional problem involving a floating sphere half-

immersed and making periodic heaving oscillations by Havelock (1955). Two and three-dimensional multipole 

expansions in the theory of surface waves in infinitely deep water and also in water of uniform finite depth has 

been given by Thorne (1953). Rhodes-Robinson (1970) constructed wave-free potentials in the presence of surface 

tension at the free surface. Mandal and Goswami (1984) studied oblique scattering by a half-immersed circular 

cylinder by using two methods, one based on integral equation formulation and other based on expansion of the 

scattered velocity potential by the method of multipoles. 

Thus for various classes of water wave problems many researchers use the wave-free potentials in the 

mathematical analysis. In most of these works the expressions of wave free potentials are only given without their 

method of derivation. However, Linton and McIver (2001) indicated briefly how these can be constructed in case 

of water with a free surface. 

Recently there is a considerable interest in the mathematical investigation of ice-wave interaction 

problems due to an increase in the scientific activities in polar oceans. Instead of a free surface, a polar ocean in 

covered by ice. The ice cover is modelled as a thin uniform sheet of ice of which still a smaller part is immersed 

in water, and is composed of materials having elastic properties. Already, quite a number of researchers have 

considered various types of water wave problems in a polar ocean with an ice-cover modelled as a thin elastic 

plate. Das and Mandal (2009) investigated wave scattering by a circular cylinder half-immersed in water with an 

ice-cover. They employed the method of multipoles by using the general expansion theorem for the wave potential 

involving wave-free potentials whose expressions were only given. Recently Das and Mandal (2010) investigated 

construction of wave-free potential in the linearized theory of water waves. The method of constructing these 

wave-free potentials was presented there in a systematic manner for a number of situations such as deep water 

with a free surface, neglecting or taking into account the effect of surface tension, or with an ice-cover modelled 

as a thin elastic plate floating on water. 
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In these cases then higher-order boundary conditions involves third order partial derivative (surface 

tension) and fifth-order partial derivatives (ice-cover) were presented. However, the boundary value problem 

involving higher-order boundary conditions more than fifth order partial derivatives (Manam et. al. (2006), Das 

et. al. (2008), Das (2015)) have not been extensively studied with a view to establish the wave-free potentials in 

a single layer fluid. 

                In this paper, we extend the problems of Das and Mandal (2010), Dhillon and Mandal (2014) 

investigated the problem of wave-free potentials in water wave theory for free surface boundary condition with 

higher-order derivatives and presented in a systematic manner. When the higher-order partial derivative reduces 

to 1st order (free surface) or, third order (surface tension) or fifth order (ice-cover), wave free potentials exactly 

coincide with the wave free potentials for two dimension (cf. Das and Mandal (2010)) and also for three dimension 

(cf. Dhillon and Mandal (2014)). 

 

II. Formulation Of The Problem 
The usual assumptions of incompressible, homogeneous and inviscid fluid, irrotational and simple 

harmonic motion with angular frequency under gravity only, are made. A rectangular cartesian co-ordinate 

system is chosen with its origin on the mean horizontal position of the upper surface of the fluid taken as ( , )x z  

plane and y-axis is taken to be vertically downwards into the fluid region. We first consider solutions of Laplace 

equation which are singular at (0, 0)f  . Let 
',   be the angles defined by 

                                   tan ,
x

y f
 


      tan '

x

y f
  


 

and let , 'r r  denote the radial distances of the point ( , )x y  from the points (0, )f  and 

(0, ) ( 0)f f   respectively. 

2.1   Non Oblique wave 

If  e{ ( , ) }iwtR x y e 
denotes the velocity potential describing the motion in the fluid, the ( , )x y  

satisfies  

                                                                       

2 0,   in the  fluid region,                      (2.1)  

where 
2  denotes the two-dimensional Laplace operator. 

The bottom condition is given by 

                                                                 ( , )x y as y                           (2.2) 

Also ( , )x y  behaves as outgoing waves as x  . 

The potential function ( , )x y  satisfies (2.1), (2.2) and also linearized boundary condition for higher-order 

derivatives has been introduced by Manam et. al.(2006) and has the form 

                                                                 0 0,y K on y                        (2.3) 

where  is a linear differential operator of the form 

                                                                      

0 2

2
0

.
m m

m m
m

C
x                                                   (2.4) 

In (2.4) 0( 0,1,..., )mC m m are known constants. Keeping in mind various physical problems involving 

fluid structure interaction, only the even order partial derivatives in x  are considered in the differential operator 

. 

Let 
s

n  and 
a

n  denote the symmetric and anti-symmetric multipoles satisfying (2.1) except at (0, )f  with 

boundary conditions (2.2), (2.3) and 
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cos
0,s

n n

n
as r

r
                                          (2.5) 

                                                        

sin
0,a

n n

n
as r

r
                                        (2.6) 

Also they represent outgoing waves as x  .The suitable multipoles are 

                                          
0

cos
(k)e cos ,s ky

n n

n
A kx dk

r
                    (2.7) 

                                          
0

sin
( ) e sin ,a ky

n n

n
B k kx dk

r
                        (2.8) 

where ( )A k  and ( )B k  are functions of k  to be found such that the integrals exist in some sense and boundary 

condition (2.3) is satisfied. The unknown constants are obtained as (cf. Das and Mandal (2010)) 

                         

0 2 1

1 0
( ( 1) )( 1)

( )
(n 1)! ( )

m m mn
mn kfm

C k K
A k k e

H k
              (2.9) 

                        

0 2 11
1 0

( ( 1) )( 1)
( )

(n 1)! ( )

m m mn
mn kfm

C k K
B k k e

H k
           (2.10) 

where      

                                               

0

2 1

0

( ) ( 1) .
m

m m

m

m

H k C k K  

Thus we have

0 2 1

1 ( )0

0

( ( 1) )cos ( 1)
cos ,

(n 1)! ( )

m m mn
ms n k y fm

n n

C k Kn
k e kx dk

r H k
 

                                                                                                                                                                       (2.11) 

0 2 11
1 ( )0

0

( ( 1) )sin ( 1)
sin ,

(n 1)! ( )

m m mn
ma n k y fm

n n

C k Kn
k e kx dk

r H k
 

                                                                                                                                                                       (2.12) 

where the contour of the integrals is indented below the pole k  on the real k -axis, being the only 

real positive root of the dispersion equation 

                                           

0

2 1

0

( ) ( 1) 0.
m

m m

m

m

H k C k K
                         (2.13) 

 

The far-field forms of the multipoles are given by 

                                                            
( )2

'( )

i xs y f

n n

K
ia e e

H
,                                (2.14) 
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( )2

'( )

i xa y f

n n

K
ib e e

H
,                                 (2.15) 

as x where 

                                                                 
1( 1)

(n 1)!

n
n

na ,                                                            (2.16) 

 

                                                                 

1
1( 1)

(n 1)!

n
n

nb .                                                          (2.17) 

 

Using (2.16) and (2.17), we find 

                                             1 0,
(n 1)

n na a 1 0.
(n 1)

n nb b                       (2.18) 

Thus, 

                             1 1

cos cos( 1)

(n 1) (n 1)

s s

n n n n

n n

r r
 

                                                   
2 ( )

1
0

( 1)
( ) cos

(n 1)!

n
n k y fk g k e kxdk ,                    (2.19) 

 

                            1 1

sin sin( 1)

(n 1) (n 1)

a a

n n n n

n n

r r
 

                                             

1
2 ( )

1
0

( 1)
( ) sin ,

(n 1)!

n
n k y fk g k e kxdk

           (2.20) 

where  

                                            

0 2 1

0
1

( ( 1) )
g ( )

g( )

m m m

mm
C k K

k
k

                       (2.21) 

0 0 0 0 0

0

2 2 1 2 2 22( ) ( 1) ( ... )
m m m m m

mg k c k k k  

0 0 0 0 0

0

1 2 1 2 2 2 3 2 12

1 1 0( 1) ( ... ) ... c ( ) c .
m m m m m

mc k k k k  

Making 0f , then from (2.19) and (2.20) we get symmetric and anti symmetric wave-free potentials are 

given by 

                                                   

( )

1

cos m cos(m 1)

(m 1)

s

m m mr r  

                

2

1
0

( 1)
( ) cos , 1,2,3,...,

( 1)!

m
m kyk g k e kxdk m
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and 

                                 

(o)

1

sin sin( 1)

( 1)
m m m

m m

r m r  

                   

1
2

1
0

( 1)
( ) sin , 1,2,3,....

( 1)!

m
m kyk g k e kxdk m

m         (2.23) 

 

In particular, choose 0 01, 0, 1,2,..., ,ic c i m the boundary value problem (BVP) becomes the BVP 

for water with free surface (cf. Das and Mandal (2010)) and the wave-free potentials become the wave-free 

potentials for single layer fluid with free surface. Similarly, if choose 0 1 21 , 0, ,c K c c D

00, 3,4,5,...,ic i m , then the BVP becomes the BVP for fluid with ice cover boundary condition 

and obtain wave-free potentials (cf. Das and Mandal (2010)). 

 

2.2         Oblique wave 
 

Under the usual assumptions of linear water wave theory a velocity potential can be defined for oblique waves in 

the form 

 

                      ( , , , ) { ( , ) }i t i zx y z t Re x y e       

 

where ( , )x y is a complex valued potential function, is the wave number component along the z-direction. 

  satisfies Helmholtz equation 

 

                                                                
2 2( ) 0,          in the fluid region.                          (2.24) 

 

On the upper surface having the mean position 0,y  satisfies the free-surface condition with higher-order 

derivatives of the form (cf. Manam et al (2006)) 

 

                                                          0 0,y K on y                          (2.25) 

 

where is a linear differential operator of the form 

                                                        

0 2
2

2
0

.

mm

m

m

c
x                                           (2.26) 

 

In (2.26) 0( 0,1,..., )mc m m are known constants. Keeping in mind various physical problems involving 

fluid structure interaction, only the even order partial derivatives in x  are considered in the differential operator

. 

Let 
s

n  and 
a

n  denote the symmetric and anti-symmetric multipoles satisfying (2.24) except at (0, )f  with 

boundary conditions (2.25), (2.2) and 

                                                      ( )cos 0,s

n nK r n as r                          (2.27) 
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                                                    ( )sin 0a

n nK r n as r                         (2.28) 

 

where (z)nK  denotes the modified Bessel function of second kind. 

The multipoles are constructed as (cf. Thorne (1953)) 

 

        
cosh

1
0

( )cos ( )cos( sinh ) ,s y k

n nK r n A k x k e dk         (2.29) 

 

       
cosh

1
0

( )sin ( )sin( sinh )a y k

n nK r n B k x k e dk             (2.30) 

 

where 1( )A k  and 1( )B k are functions of k  to be obtained such that the integrals exist in some sense and the 

boundary condition (2.25) is satisfied. 

The surface condition (2.25) is satisfied if 1( )A k and 1( )B k  are chosen as 

           

0 2

0
1

( ( 1) )
( ) ( 1) cosh ,

( )

m m m

mn fm
c K

A k nk e
H

           (2.31) 
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           (2.32) 

where 

                                                                      cosh .k  

Thus we can construct the multipoles are given by 

 

                           ( ) coss

n nK r n  

0 2

( )0

0

( ( 1) )
( 1) cosh cos( sinh )

( )

m m m

mn y fm
C K
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            (2.33) 

 

                         ( )sina

n nK r n  

0 2

( )0

0

( ( 1) )
( 1) sinh sin( sinh )

( )

m m m

mn y fm
C K

nk x k e dk
H

              (2.34) 

where the contour is indented below the pole k  on the real k -axis to take care of the outgoing nature as

x  , where 

 

                                                                    cosh .  

where  being the only real positive root of the dispersion equation 

                                   

0 2

0
( ) ( ( 1) ) 0.

m m m

mm
H c K                           (2.35) 
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The far-field forms of the multipoles are given by 
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ia e e
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as x  , where 
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2( 1) cosh ,n

na n                                            (2.38) 
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2( 1) sinh .n
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Using (2.38) and (2.39), we find 

                                                         

(1) (1) (1)

2 1

2
0,n n na a a

                               (2.40) 

                                                          

(1) (1) (1)

1 1

2
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Thus 

2 1 2 1

2 2
( )cos( 2) ( )cos( 1)

( )cos

s s s
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n
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1
0

2( 1)
( )cosh( 1) cos( sinh )

n
y fg n k x k e dk               (2.42) 

and   

 

1 1 1

1

2 2
( )sin( 1) ( )sin

( )sin( 1)

a a a

n n n n n

n

K r n K r n

K r n
 

         

1
( )

1
0
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n
y fg nk x k e dk

                    (2.43) 

These are wave-free potentials with singularity at (0, )f . 



Wave Free Potentials In The Theory Of Water Waves Having Free 

www.ijesi.org                                                              40 | Page 

Making 0f  in (2.42) and (2.43) we obtain the symmetric and anti-symmetric wave-free potentials with 

singularity in the free surface and are given by 

2 1

2
( )cos( 2) ( )cos( 1) ( )coss

m m m mK r m K r m K r m
 

1
0

2( 1)
( )cosh( 1) cos( sinh ) , 1,2,3,...

m
yg m k x k e dk m  

                                                                                                                                                                       (2.44) 

and   

1 1

2
( )sin( 1) ( )sin ( )sin( 1)a

m m m mK r m K r m K r m
 

1

1
0

2( 1)
( )sinh sin( sinh ) , 1,2,3,...

m
yg mk x k e dk m  

                                                                                                                                                                       (2.45) 

These have been used by Das and Mandal (2009) in the study of wave scattering by a long circular cylinder half-

immersed in water with an ice-cover. Here also in particular, the results for water with free surface as well as ice-

cover surface are similar to the case of non oblique wave potential (cf. Das and Mandal (2010)). 

 

2.3  Three-Dimensional Wave-Free Potentials 

With the origin at the mean free surface, the x  and z -axes horizontal and the y -axis vertical, y increasing 

with depth, we define the angles 
',   and  by the relations 

                   

'tan , tan , tan
R R z

y f y f x
     

 
 

where 
2 2R x z . Let 

'andr r  denote the radial distances of the point ( , , )x y z  from the 

points (0, ,0)f  and (0, ,0)f  respectively. 

        If { ( , , ) }iwtRe x y z e 
denote the velocity potential singular at (0, ,0)f describing the motion 

in the fluid, then ( , , )x y z satisfies 

 

                            

2 2 2

2 2 2
0

x y z
    in the fluid region except at (0, ,0).f             (2.46) 

The bottom condition for water of infinite depth is given by 

 

                                       ( , , ) 0 .x y z as y                                              (2.47) 

 

Also ( , , )x y z  behaves as outgoing waves as R . 

The potential function ( , , )x y z satisfies (2.46), (2.47) and the linearized condition given by 

                                       

0

2

,

0

0 0.
m

s

s x z y

s

C K on y
                      (2.48) 
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In (2.48) 0(s 0,1,2,..., )sC m  are known constants, 

                                                          

2
2 2

, 2 2

1
s

s

x z R
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where   

                                                            
2 1

( ) .R R
R R R

                                              (2.49) 

 

In this case (cf. Dhillon and Mandal (2014)), 

                       21
0

(cos )
(k)e ( ) ,

m
m kyn
n mn

p
A J kR dk

r
                 (2.50) 

 

and 2 (k)A  is a function of k  to be obtained such that the integral exists and the boundary condition (2.48) is 

satisfied. The condition (2.48) is satisfied if 2 (k)A is chosen as 

 

                   

0 2 1

0
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m s s
n
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Thus we get 
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                                                                                                                                                                  (2.52) 

where the contour of the integral is defined below the pole k  on the real k axis, being the only real 

positive root of the dispersion equation 

                                                   

0

2 1

0
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m

s s

s

s
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The far-field form of the multipole is given by 

( )
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4 2
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K
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where 

                                                           

(2) 2
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.
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n
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n

na e
n m                                             (2.54) 

 

From (2.54) we get, 
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Therefore, the combination 
1

( 1)
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n m

does not contribute anything as R  , so that they are 

wave-free. Thus, 

1

1 2 1
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( 1) ( 1)
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                      (2.56) 

This is the wave-free potential having singularity at (0, ,0)f . Making 0f  in (2.56) we find the wave-

free potential having singularity in the free surface and is given by 

                                  

1

2 1

(cos ) (cos )

( 1)

m m
m n n
n n n

p p

r n m r  

                                            

1

1
0

( 1)
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In particular, choose 0 01, 0, 1,2,..., ,ic c i m  the boundary value problem (BVP) becomes the BVP 

for water with free surface (cf. Dhillon and Mandal (2014)) and the wave-free potentials become the wave-free 

potentials for single layer fluid with free surface. Similarly, if choose 0 1 21 , 0, ,c K c c D

00, 3,4,5,...,ic i m , then the BVP becomes the BVP for fluid with ice-cover boundary condition 

and obtain wave-free potentials (cf. Dhillon and Mandal (2014)). 

 

III. Conclusion 
Wave free potentials in single-layer fluid with a free surface condition with higher order derivatives for 

non-oblique and oblique waves (two dimensions) and also three-dimension are constructed in a symmetric 

manner. Appropriate modifications of the wave-free potentials can be made in the circumstances when the fluid 

are of uniformly finite depth having a free surface conditions with higher order derivatives. In particular, these 

are obtained taking into account of the effect of the presence of free surface, surface tension at the free surface 

and also in the presence of an ice-cover modelled as thin elastic plate. 
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