Summability Classes of Sequences of Interval Numbers

Dr. Manmohan Das¹, Swapnajvoti Sarma²

¹Deptt. of Mathematics, Bajali College, Assam, India ²Deptt. of Physics, Bajali College, Assam, India Corresponding Author: Dr. Manmohan Das

Abstract : In this article we introduce and study the notions of $\Delta^s_{(v,r)}$ -lacunary strongly summable, $\Delta^s_{(v,r)}$ -
Cesàro strongly summable, $\Delta^{s}_{(v,r)}$ - statistically convergent and $\Delta^{s}_{(v,r)}$ -lacunary statistically convergent
sequence of interval numbers. Consequently we construct the sequence classes $\ell^i_{\theta}\left(\Delta^s_{(v,r)}\right), \sigma^i_1\left(\Delta^s_{(v,r)}\right),$
$s^{i}(\Delta_{(v,r)}^{s})_{and} s^{i}_{\theta}(\Delta_{(v,r)}^{s})_{respectively and investigate the relationship among these classes.}$
Keywords: Sequence of interval numbers; Difference sequence; lacunary strongly summable; Cesàro strongly summable; statistically convergent; lacunary statistically convergent; Completeness.
Date of Submission: 21-12-2018 Date of acceptance: 05-01-2019

I. Introduction

The concept of interval arithmetic was first suggested by Dwyer [1] in 1951. After developed by Moore [10], Moore and Yang [13]. Furthermore several authors have studied various aspects of the theory and applications of interval numbers in differential equations [13], [14], [15]. The sequence of interval numbers was first introduced by Chiao [20] and defined usual convergence. Bounded and convergence sequences spaces of interval numbers were introduced by Sengonul and Eryilmaz [] and showed that these spaces are complete metric space.

A set consisting of closed interval of real numbers x such that $a \le x \le b$ is called an interval number. A real interval can also be considered as a set. Denote the set of all real valued closed intervals by \Box . Any member of \Box is called closed interval and denoted by \overline{x} . Thus $\overline{x} = \{x \in \Box : a \le x \le b\}$. In [20], an interval number is closed subset of real line \Box .

Let x_1 and x_2 be the first and last points of the interval number \overline{x} respectively. For $\overline{x_1}$, $\overline{x_2} \in \Box$, we have

$$\overline{x_1} = \overline{x_2} \Leftrightarrow x_{l_l} = x_{2_l}, x_{l_r} = x_{2_r}.$$

$$\overline{x_1} + \overline{x_2} = \left\{ x \in \Box : x_{l_l} + x_{2_l} \le x \le x_{1r} + x_{2_r} \right\}$$

$$\alpha \overline{x} = \left\{ x \in \Box : \alpha x_{l_l} \le x \le \alpha x_{l_r} \right\} \text{ if } \alpha \ge 0.$$

$$= \left\{ x \in \Box : \alpha x_{l_r} \le x \le \alpha x_{l_l} \right\} \text{ if } \alpha < 0.$$

and

$$\bar{x}_1 \cdot \bar{x}_2 = \left\{ x \in \Box : \min\left(x_{1_l} \cdot x_{2_l}, x_{1_l} \cdot x_{2_r}, x_{1_r} \cdot x_{2_l}, x_{1_r} \cdot x_{2_r}\right) \le x \le \max\left(x_{1_l} \cdot x_{2_l}, x_{1_l} \cdot x_{2_r}, x_{1_r} \cdot x_{2_r}\right) \right\}$$

The set of all interval numbers \square is complete metric space under the metric defined by –

$$d(\bar{x}, \bar{y}) = \max\{|x_{1_{l}} - x_{2_{l}}|, |x_{1_{r}} - x_{2_{r}}|\} \text{ (see [18])}$$

Let us consider the transformation $f: \Box \to \Box$ by $k \to f(k) = \overline{x}$ where $\overline{x} = (\overline{x}_k)$ which is known as sequence of interval numbers. \overline{x}_k denotes the k^{th} term of the sequence $\overline{x} = (\overline{x}_k)$. The set of all sequences of interval numbers is denoted by w^i can be found in [18].

II. **Definitions and Main Results**

Let X be a linear metric space. A function $p: X \rightarrow R$ is called paranorm if –

- (1) $p(x) \ge 0$ for all $x \in X$
- (2) p(-x) = p(x) for all $x \in X$
- (3) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$
- (4) If (λ_n) be a sequence of scalars such that $\lambda_n \to 0$ as $n \to \infty$ and (x_n) be a sequence of vectors with $p(x_n - x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n - \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which $p(x) = 0 \Longrightarrow x = 0$ is called total paranorm and the pair (X, p) is called a total paranormed space.

Let $\phi = (\phi_n)_n$ be a sequence of Young functions i.e. $\phi_n : \square^+ \to \square^+$ is an increasing and convex function such that $\phi_n(x) = 0$ for x > 0 and $\phi_n(0) = 0$. The Musielak-Orlicz sequence space ℓ^{ϕ} is given by –

$$\ell^{\phi} = \left\{ x = (x_n)_n : \sum_n \phi_n(\lambda |x_n|) < \infty, \lambda > 0 \right\}$$
 .This becomes Banach space under the burge)

norm(Luxemburg)

$$|x|_{\phi} = \inf\left\{\eta > 0: \sum_{n} \phi_{n}\left(\frac{|x_{n}|}{\eta}\right) \le 1, \eta > 0\right\}$$

Let $\phi = (\phi_k)$ be the sequence of Young functions. The space consisting of all those sequences $\bar{x} = (\bar{x}_k)$ in w^i such that

$$\phi\left(\frac{\left|\bar{x}_{k}\right|^{\frac{1}{k}}}{\eta}\right) \to 0 \text{ as } k \to \infty \text{ for some } \eta > 0 \text{ is known as class of entire sequences of interval numbers}$$

defined by sequence of Young functions and is denoted by $\overline{\Gamma}_{\phi}$. The space consisting of all those sequences

 $\bar{x} = (\bar{x}_k)$ in w^i such that $\sup_k \left(\phi \left(\frac{|\bar{x}_k|^{\frac{1}{k}}}{\eta}\right)\right) < \infty$ for some $\eta > 0$ is known as class of analytic sequences of

interval numbers defined by sequence of Young functions and is denoted by Λ_{ϕ} .

Lemma 2.1: Let (α_k) and (β_k) be sequences of real or complex numbers and (p_k) be a bounded sequence of positive real numbers, then

$$\begin{split} &|\alpha_k + \beta_k|^{p_k} \leq D(|\alpha_k|^{p_k} + |\beta_k|^{p_k}) \\ &\text{and} \qquad &|\lambda|^{p_k} \leq \max(1, |\lambda|^H) \\ &\text{where} \quad D = \max(1, |\lambda|^{H-1}), H = \text{supp}_k \quad, \lambda \text{ is any real or complex number.} \end{split}$$

Lemma 2.2: If d is translation invariant then

(a)
$$d\left(\overline{x}_{k} + \overline{y}_{k}, \overline{0}\right) \leq d\left(\overline{x}_{k}, \overline{0}\right) + d\left(\overline{y}_{k}, \overline{0}\right)$$

(b) $d\left(\alpha \overline{x}_{k}, \overline{0}\right) \leq |\alpha| d\left(\overline{x}_{k}, \overline{0}\right), |\alpha| > 1.$

Let $\overline{x} = (\overline{x}_k)$ be sequence of interval numbers, $p = (p_k)$ be sequence of strictly positive integers, $A = (a_{nk})$ be non negative regular matrix and $\phi = (\phi_k)$ be a sequence of Young functions, we define the following classes of sequences of interval numbers as follows:

$$\overline{\Gamma}_{\phi}(A,p) = \left\{ \overline{x} = (\overline{x}_{k}) : \lim_{k \to \infty} \sum_{k} a_{nk} \left[d \left(\phi \left(\frac{|\overline{x}_{k}|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p_{k}} = 0 \right\}$$
$$\overline{\Lambda}_{\phi}(A,p) = \left\{ \overline{x} = (\overline{x}_{k}) : \sup_{n} \left(\sum_{k} a_{nk} \left[d \left(\phi \left(\frac{|\overline{x}_{k}|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p_{k}} \right) < \infty \right\}$$

for some $\eta > 0$. We can specialize these spaces as follows:

(a) If A = I, the unit matrix then –

$$\overline{\Gamma}_{\phi}(I,p) = \left\{ \overline{x} = \left(\overline{x}_{k}\right) : \lim_{k \to \infty} \left[d\left(\phi\left(\frac{\left|\overline{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right)\right) \right]^{p_{k}} = 0 \right\}$$
$$\overline{\Lambda}_{\phi}(I,p) = \left\{ \overline{x} = \left(\overline{x}_{k}\right) : \sup_{k} \left(\left[d\left(\phi\left(\frac{\left|\overline{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right)\right) \right]^{p_{k}} \right) < \infty \right\}$$

(b) If we take $\phi(x) = x$ then we get –

$$\overline{\Gamma}(A,p) = \left\{ \overline{x} = (\overline{x}_k) : \lim_{k \to \infty} \sum_k a_{nk} \left[d\left(\frac{|\overline{x}_k|^{\frac{1}{k}}}{\eta}, 0 \right) \right]^{p_k} = 0 \right\}$$
$$\overline{\Lambda}(A,p) = \left\{ \overline{x} = (\overline{x}_k) : \sup_n \left(\sum_k a_{nk} \left[d\left(\frac{|\overline{x}_k|^{\frac{1}{k}}}{\eta}, 0 \right) \right]^{p_k} \right] < \infty \right\}$$

(c) If $A = (a_{nk})$ is Cesaro matrix of order 1 and $p_k = p$ then we have -

$$\overline{\Gamma}_{\phi}(p) = \left\{\overline{x} = (\overline{x}_{k}) : \lim_{k \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left[d\left(\phi\left(\frac{\left|\overline{x}_{k}\right|^{1/k}}{\eta}, 0\right)\right) \right]^{p} \right\} = 0$$

$$\overline{\Lambda}_{\phi}(p) = \left\{ \overline{x} = (\overline{x}_{k}) : \sup_{n} \left(\frac{1}{n} \sum_{k=1}^{n} \left[d\left(\phi\left(\frac{\left| \overline{x}_{k} \right|^{1/k}}{\eta}, 0 \right) \right) \right]^{p} \right) < \infty \right\}$$

The space $\,\Gamma\,$ is defined as follows ;

$$\overline{\Gamma} = \left\{ \overline{x} = \left(\overline{x}_k\right) : \lim_{k \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{\left|\overline{x}_k\right|^{1/k}}{\eta} = 0 \right\} \text{ for some } \eta > 0.$$

III. Main Results

Theorem 3.1: If d is translation invariant then the class of sequence $\overline{\Gamma}_{\phi}(p)$ is closed under addition and scalar multiplication of interval numbers.

Proof: Let $\overline{x} = (\overline{x}_k) \in \overline{\Gamma}_{\phi}(p)$ and $\overline{y} = (\overline{y}_k) \in \overline{\Gamma}_{\phi}(p)$

In order to prove the result, we need to find some $\eta_3 > 0$ such that

$$\sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \left(a \overline{x_{k}} + b \overline{x_{k}} \right) \right|^{1/k}}{\eta_{3}}, 0 \right) \right) \right]^{p} \to 0 \quad \text{as} \quad k \to \infty$$

Since $\overline{x} = (\overline{x}_k) \in \overline{\Gamma}_{\phi}(p)$ and $\overline{y} = (\overline{y}_k) \in \overline{\Gamma}_{\phi}(p)$, there exists some $\eta_1 > 0$ and $\eta_2 > 0$ such that –

$$\sum_{k=1}^{n} \frac{1}{n} \left[d\left(\phi\left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta_{1}}, 0 \right) \right) \right]^{p} \to 0 \text{ as } k \to \infty \text{ and}$$
$$\sum_{k=1}^{n} \frac{1}{n} \left[d\left(\phi\left(\frac{\left| \overline{y}_{k} \right|^{\frac{1}{k}}}{\eta_{2}}, 0 \right) \right) \right]^{p} \to 0 \text{ as } k \to \infty.$$

Since ϕ is non-decreasing, we have

$$\begin{split} \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \left(a \bar{x}_{k} + b \bar{y}_{k} \right) \right|^{\frac{1}{k}}}{\eta_{3}}, 0 \right) \right) \right]^{p} &\leq \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \left(a \bar{x}_{k} \right) \right|^{\frac{1}{k}}}{\eta_{3}} + \frac{\left| \left(b \bar{y}_{k} \right) \right|^{\frac{1}{k}}}{\eta_{3}}, 0 \right) \right) \right]^{p} \\ &\leq \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| a \right|^{\frac{1}{k}} \left| \bar{x}_{k} \right|^{\frac{1}{k}}}{\eta_{3}} + \frac{\left| b \right|^{\frac{1}{k}} \left| \bar{y}_{k} \right|^{\frac{1}{k}}}{\eta_{3}}, 0 \right) \right) \right]^{p} \\ &\leq \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| a \right| \left| \bar{x}_{k} \right|^{\frac{1}{k}}}{\eta_{3}} + \frac{\left| b \right| \left| \bar{y}_{k} \right|^{\frac{1}{k}}}{\eta_{3}}, 0 \right) \right) \right]^{p} \end{split}$$

Take η_3 such that

$$\frac{1}{\eta_{3}} = \min\left\{\frac{1}{|a|^{p}}, \frac{1}{\eta_{1}}, \frac{1}{|b|^{p}}, \frac{1}{\eta_{2}}\right\}$$

Then,

Hence
$$\sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \left(a \overline{x}_{k} + b \overline{y}_{k} \right) \right|^{\frac{1}{k}}}{\eta_{3}}, 0 \right) \right) \right]^{p} \leq \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta_{1}} + \frac{\left| \overline{y}_{k} \right|^{\frac{1}{k}}}{\eta_{2}}, 0 \right) \right) \right]^{p} \\ \leq \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta_{1}}, 0 \right) \right) \right]^{p} + \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \overline{y}_{k} \right|^{\frac{1}{k}}}{\eta_{2}}, 0 \right) \right) \right]^{p} \\ \text{Hence} \quad \sum_{k=1}^{n} \frac{1}{n} \left[d \left(\phi \left(\frac{\left| \left(a \overline{x}_{k} + b \overline{y}_{k} \right) \right|^{\frac{1}{k}}}{\eta_{3}}, 0 \right) \right) \right]^{p} \rightarrow 0 \text{ as } k \rightarrow \infty.$$

So $\bar{ax_k} + \bar{bx_k} \in \overline{\Gamma}_{\phi}(p)$. This completes the proof.

Theorem 3.2. The class of sequence $\overline{\Gamma}_{\phi}(p)$ is a complete metric space under the metric 'h' defined by –

$$h(\overline{x},\overline{y}) = \sup_{n} \left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left| \overline{x}_{k} - \overline{y}_{k} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p}$$

Proof. Let $\left\{ x^{-(i)} \right\}$ be Cauchy sequence in $\overline{\Gamma}_{\phi}(p)$.

Then for any given $\varepsilon > 0$ there exists a positive integer n_1 such that

$$h\left(\overline{x}^{(i)}, \overline{y}^{(j)}\right) < \varepsilon$$
 for all $i, j \ge n_1$.

Therefore

$$\sup_{n} \left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left| \overline{x_{k}^{(i)}} - \overline{y_{k}^{(j)}} \right|^{1/k}}{\eta}, 0 \right) \right) \right]^{p} < \varepsilon \quad \text{for all} \quad i, j \ge n_{1}. \text{ Consequently } \left\{ \overline{x_{k}^{(i)}} \right\} \text{ is a Cauchy}$$

sequence in the metric space of interval numbers which is complete and so $x_k^{-(i)} \rightarrow x_k$ as $i \rightarrow \infty$. Once can find that -

$$\left[\frac{1}{n}\sum_{k=1}^{n}d\left(\phi\left(\frac{\left|\frac{-(i)}{x_{k}}-\frac{-}{x_{k}}\right|^{1/k}}{\eta},0\right)\right)\right]^{p} < \varepsilon, \quad i \ge n_{1}.$$

Now,

Summability Classes of Sequences of Interval Numbers

$$\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p} \leq \left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left| \overline{x}_{k} - \overline{x}_{k}^{(n_{1})} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p} + \left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p} \right]^{p}$$

$$< \varepsilon + 0 \text{ as } n \to \infty.$$

$$\text{Thus } \left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p} < \varepsilon$$

$$\text{and so } (\overline{x}_{k}) \in \overline{\Gamma}_{\phi}(p).$$

Hence $\overline{\Gamma}_{\phi}(p)$ is a complete metric space. This completes the proof.

Theorem 3.3. Let $\overline{x} = (\overline{x}_k)$ be sequence of interval numbers. The sequence class $\overline{\Gamma}_{\phi}(A, p)$ is complete w.r.t the topology generated by the paranorm h defined by –

$$h(\bar{x}) = \sup_{k} \left[\sum_{k=1}^{n} a_{nk} \left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right) \right) \right]^{p_{k}} \right]_{k}$$

Where $M = \max\left\{1, \sup_{k}\left(\frac{p_k}{M}\right)\right\}$.

Proof. Obviously $h(\theta) = 0$ and $h(-\overline{x}) = h(\overline{x})$. It can also be easily seen that $h(\overline{x} + \overline{y}) \le h(\overline{x}) + h(\overline{y})$ as d is translation invariant.

Now for any scalar λ , we have $|\lambda|^{p_k/M} < \max(1, \sup |\lambda|)$, so that

 $h(\lambda x) < \max(1, \sup |\lambda|), \lambda$ fixed implies $\lambda x \to \theta$. Now let $\lambda \to \theta, x$ fixed for $\sup |\lambda| < 1$, we have

$$\left(\sum_{k=1}^{n} a_{nk} \left[d\left(\phi\left(\frac{\left|\overline{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right)\right) \right]^{p_{k}} \right)^{\frac{1}{M}} < \varepsilon \text{ for some } N > N(\varepsilon).$$

Also for $1 \le n \le N$ and $\left[\sum_{k=1}^{n} a_{nk} \left[d\left(\phi\left(\frac{\left|\overline{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right) \right) \right]^{p_{k}} \right]^{M}$

$$< \mathcal{E}$$
 there exists m such that

$$\left(\sum_{k=m}^{n}a_{nk}\left[d\left(\phi\left(\frac{\left|\lambda\bar{x}_{k}\right|^{l_{k}^{\prime}}}{\eta},0\right)\right)\right]^{p_{k}}\right)^{\frac{1}{M}} < \varepsilon$$

Taking λ small enough, we then find

$$\left(\sum_{k=m}^{n} a_{nk} \left[d\left(\phi\left(\frac{\left|\lambda \overline{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right)\right) \right]^{p_{k}} \right)^{\frac{1}{M}} < 2\varepsilon \text{ for all } k.$$

Hence $h(\lambda x) \to 0$ as $\lambda \to 0$. So h is a paranorm on $\overline{\Gamma}_{\phi}(A, p)$.

To show the completeness, let $\left\{\overline{x}^{(i)}\right\}$ be Cauchy sequence in $\overline{\Gamma}_{\phi}(A, p)$.

Then for given $\mathcal{E} > 0$ there exists positive integer r such that –

$$\left(\sum a_{nk}\left[d\left(\phi\left(\frac{\left|\overline{x_{k}^{i}}-\overline{x_{k}^{j}}\right|^{\frac{1}{k}}}{\eta},0\right)\right)\right]^{p_{k}}\right)^{\frac{1}{M}} < \varepsilon \text{ for all } j \to \infty i, j \ge r.$$

Since d is translation invariant, so

$$\left(\sum a_{nk}\left[d\left(\phi\left(\frac{\left|\frac{x_{k}^{-i}-x_{k}^{-j}\right|^{\frac{1}{k}}}{\eta},0\right)\right)\right]^{p_{k}}\right)^{\frac{1}{M}} < \varepsilon \text{ for all } i, j \ge r. \text{ and each n.}$$

Hence

$$\left[d\left(\phi\left(\frac{\left|x_{k}^{-i}-x_{k}^{-j}\right|^{\frac{1}{k}}}{\eta},0\right)\right)\right] < \varepsilon \text{ for all } i, j \ge r.$$

Therefore $\left\{ \begin{matrix} \overline{x}^{(i)} \\ x \end{matrix} \right\}$ is a Cauchy sequence in the metric space of interval numbers which is complete and hence $\overline{x}^{(j)} \to \overline{x}$ as $j \to \infty$

Keeping $r_0 \ge r$ and letting $j \to \infty$, once can find that –

$$\left(\sum a_{nk}\left[d\left(\phi\left(\frac{\left|\begin{matrix} -i & -\overline{x}_{k}\end{matrix}\right|^{1/k}}{\eta}, 0\right)\right)\right]\right] < \varepsilon \text{ for all } r_{0} \ge r.$$

• /

Since d is translation invariant, therefore

$$\left(\sum a_{nk}\left[d\left(\phi\left(\frac{\left|\overline{x_{k}^{i}}-\overline{x_{k}}\right|^{l_{k}^{i}}}{\eta},0\right)\right)\right]^{p_{k}}\right)^{l_{M}^{i}} < \varepsilon$$

i.e $\overline{x}^{(i)} \to \overline{x}$ in $\overline{\Gamma}_{\phi}(A, p)$. It can be easily seen that $\overline{x} \in \overline{\Gamma}_{\phi}(A, p)$. Thus $\overline{\Gamma}_{\phi}(A, p)$ is complete. This completes the proof. **Theorem 3.4.** If $0 < \inf p_k \le p_k \le 1$, then $\overline{\Gamma}_{\phi}(A, p) \subset \overline{\Gamma}_{\phi}(A)$.

Proof. Let $\overline{x} = (\overline{x}_k) \in \overline{\Gamma}_{\phi}(A, p)$. Since $0 < \inf p_k \le p_k \le 1$, the result follows from the following inequality

$$\sum_{k} a_{nk} \left[d\left(\phi\left(\frac{\left|\overline{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right) \right) \right] \leq \sum_{k} a_{nk} \left[d\left(\phi\left(\frac{\left|\overline{x}_{k}\right|^{\frac{1}{k}}}{\eta}, 0\right) \right) \right]^{p_{k}} \right]$$

Theorem 3.5. If $1 \le p_k \le \sup p_k < \infty$, then $\overline{\Gamma}_{\phi}(A) \subset \overline{\Gamma}_{\phi}(A, p)$. **Proof.** $\overline{x} = (\overline{x}_k) \in \overline{\Gamma}_{\phi}(A)$. Since $1 \le p_k \le \sup p_k < \infty$ then for each $0 < \varepsilon < 1$ there exist a positive integer n_0 such that

$$\sum_{k} a_{nk} \left[d\left(\phi\left(\frac{\left| \bar{x}_{k} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right] \leq \varepsilon < 1 \text{ for some } n \ge n_{0}$$

The result follows from the following inequality

$$\sum_{k} a_{nk} \left[d\left(\phi\left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right]^{p_{k}} \leq \sum_{k} a_{nk} \left[d\left(\phi\left(\frac{\left| \overline{x}_{k} \right|^{\frac{1}{k}}}{\eta}, 0 \right) \right) \right].$$

Theorem 3.6. Suppose $\overline{x} = (\overline{x_k})$ is strongly $\Delta_{(v,r)}^s$ -lacunary strongly summable to X₀. Then

$$\lim_{p\to\infty}\frac{1}{h_p}\sum_{k\in I_p}d\left(\Delta_{(v,r)}^s\overline{x}_k,\overline{x}_0\right)=0.$$

Now the result follows from the following inequality:

$$\sum_{k \in I_p} d\left(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0\right) \ge \varepsilon \operatorname{card}\left\{k \le n : d\left(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0\right) \ge \varepsilon\right\}$$

Theorem 3.7. If a sequence $\overline{x} = (\overline{x_k})$ of interval numbers is $\Delta_{(v,r)}^s$ -bounded and $\Delta_{(v,r)}^s$ - statistically convergent, then it is $\Delta_{(v,r)}^s$ - Cesàro strongly summable.

Proof. Suppose $\overline{x} = (\overline{x_k})$ is $\Delta_{(v,r)}^s$ -bounded and $\Delta_{(v,r)}^s$ - statistically convergent to \overline{x}_0 . Since $\overline{x} = (\overline{x_k})$ is $\Delta_{(v,r)}^s$ -bounded, we can find a interval number M such that

$$d(\Delta_{(v,r)}^s \overline{x}_k, \overline{x}_0) \le M \text{ for all } k \in \mathbb{N}$$

Again since $\overline{x} = (\overline{x_k})$ is $\Delta_{(v,r)}^s$ - statistically convergent to $\overline{x_0}$, for every $\varepsilon > 0$

$$\lim_{n} \frac{1}{n} \operatorname{card} \left\{ k \le n : d(\Delta_{(v,r)}^{s} \overline{x}_{k}, \overline{x}_{0}) \ge \varepsilon \right\} = 0,$$

Now the result follows from the following inequality

$$\frac{1}{n}\sum_{1\leq k\leq n}d\left(\Delta_{(\nu,r)}^{s}\overline{x}_{k},\overline{x}_{0}\right)=$$

$$\frac{1}{n} \sum_{\substack{1 \le k \le n \\ d(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0) \ge \varepsilon}} d(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0) + \frac{1}{n} \sum_{\substack{1 \le k \le n \\ d(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0) < \varepsilon}} d(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0)$$
$$\leq \frac{M}{n} \operatorname{card} \left\{ k \le n : d(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0) \ge \varepsilon \right\} + \varepsilon$$

Theorem 3.8. Let θ be a lacunary sequence. Then if a sequence $\overline{x} = (\overline{x_k})$ is $\Delta_{(v,r)}^s$ -bounded and $\Delta_{(v,r)}^s$ lacunary statistically convergent, then it is $\Delta_{(v,r)}^{s}$ - lacunary strongly summable. Proof. Proof follows by similar arguments as applied to prove above Theorem.

Theorem 3.9. Let θ be a lacunary sequence and $\overline{x} = (\overline{x_k})$ be $\Delta_{(v,r)}^s$ -bounded. Then X is $\Delta_{(v,r)}^s$ - lacunary statistically convergent if and only if it is $\Delta_{(v,r)}^{s}$ - lacunary strongly summable.

Proof. Proof follows by combining the Theorems 3.1 and 3.3.

Theorem 3.10. If a sequence $\overline{x} = (\overline{x_k})$ is $\Delta_{(v,r)}^s$ - statistically convergent and $\lim \inf_p \left(\frac{h_p}{p}\right) > 0$ then it is

 $\Delta^s_{(v,r)}$ -lacunary statistically convergent.

Proof. Assume the given conditions. For a given $\varepsilon > 0$, we have

$$\left\{k \in I_p : d(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0) \ge \varepsilon\right\} \subset \left\{k \le n : d(\Delta_{(v,r)}^s \bar{x}_k, \bar{x}_0) \ge \varepsilon\right\}$$

Hence the proof follows from the following inequality:

$$\frac{1}{p}\operatorname{card}\left\{k \le p : d(\Delta_{(v,r)}^{s} \overline{x}_{k}, \overline{x}_{0}) \ge \varepsilon\right\} \ge \frac{1}{p}\operatorname{card}\left\{k \in I_{p} : d(\Delta_{(v,r)}^{s} \overline{x}_{k}, \overline{x}_{0}) \ge \varepsilon\right\}$$
$$= \frac{h_{p}}{p} \frac{1}{h_{p}}\operatorname{card}\left\{k \in I_{p} : d(\Delta_{(v,r)}^{s} \overline{x}_{k}, \overline{x}_{0}) \ge \varepsilon\right\}$$

References

- P.S Dwyer, Linear Computation, New York, Wiley(1951). [1].
- [2]. M.Et. and R. Colak, On generalized difference sequence spaces, Soochow Jour. Math. 21 (1995) 377-386.
- [3]. H Fast, Sur la convergence statistique, Colloq. Math. (1951) 241-244.
- [4]. [5]. J.A Fridy. and C Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(12) (1997) 3625-3631.
- A.R Freedman, J.J.Sember. and M.Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc. 37(3) (1978) 508-520.
- [6]. H Kizma, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981) 168-176.
- [7]. M Matloka, Sequences of fuzzy numbers, BUSEFAL 28 (1986) 28-37.
- LJ Maddox, A Tauberian condition for statistical convergence, Math. Proc. Camb. Phil. Soc. 106 (1989) 277-280. [8].
- [9]. A Esi, Lacunary sequence space of interval numbers. Thai Journal of Mathematics, 10(2012): 445-451.
- [10]. R.E Moore, Automatic error analysis in digital computation, LSMD-48421, Lockheed Missiles and Space Company (1959).
- D Rath and B.C Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian J. Pure & Appl. Math. 27(2) [11]. (1996) 197-206.
- [12]. I.J Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(1959) 3621-4375.
- [13]. R.E Moore and C. T Yang, Interval Analysis-1, LSMD-285875, Lockheed Missiles and Space Company (1962). [14]. R.E Moore and C. T Yang, Theory of an interval algebra and its applications to numeric analysis, RAAG Memories-II, Gaukutsu Bunken Fukeyu-kai(1958)
- [15]. S Markov, Quisilinear spaces and their relation to vector space. Electronic Journal on Mathematics of Computation 2(2005).
- [16]. B.C Tripathy and A Esi, A new type of difference sequence spaces, Int. Jour. of Sci. & Tech. 1 (2006) 11-14.
- B.C Tripathy and A Esi and B. K Tripathy, On a new type of generalized difference Cesàro Sequence spaces, Soochow J. Math. [17]. 31(3) (2005) 333-340.
- [18]. M Sengonul. and A Eryimaz., On the sequence space of interval numbers, Thai Journal of Mathematics, 8(2010): 503-510.
- Mursaleen, λ Statistical Convergence, Math. Slovaca, 50(2000):111-115. [19].
- [20]. Kou-Ping Chiao, Fundemental properties of interval vector max-norm, TamsuiOxford Journal of Mathematics, 18(2002): 219-223.
- A Esi., λ Sequence spaces of interval numbers, Appl. Math. Inf. Sci 8(3)(2014): 1099-1102. A. Zygmund, Trigonometric series, Vol. 2, Cambridge, 1993. [21].
- [22].

```
Dr. Manmohan Das" Summability Classes of Sequences of Interval Numbers"
International Journal of Engineering Science Invention (IJESI), vol. 07, no. 12, 2018, pp
73-81
```