Summability Classes of Sequences of Interval Numbers

Dr. Manmohan Das ${ }^{1}$, Swapnajyoti Sarma ${ }^{2}$
${ }^{1}$ Deptt. of Mathematics, Bajali College, Assam, India
${ }^{2}$ Deptt. of Physics, Bajali College, Assam, India Corresponding Author: Dr. Manmohan Das

Abstract : In this article we introduce and study the notions of $\Delta_{(v, r)}^{s}$-lacunary strongly summable, $\Delta_{(v, r)}^{s}$ Cesàro strongly summable, $\Delta_{(v, r)}^{s}$ - statistically convergent and $\Delta_{(v, r)}^{s}$-lacunary statistically convergent sequence of interval numbers. Consequently we construct the sequence classes $\ell_{\theta}^{i}\left(\Delta_{(v, r)}^{s}\right), \sigma_{1}^{i}\left(\Delta_{(v, r)}^{s}\right)$, $s^{i}\left(\Delta_{(v, r)}^{s}\right)$ and $s_{\theta}^{i}\left(\Delta_{(v, r)}^{s}\right)$ respectively and investigate the relationship among these classes.
Keywords: Sequence of interval numbers; Difference sequence; lacunary strongly summable; Cesàro strongly summable; statistically convergent; lacunary statistically convergent; Completeness.

I. Introduction

The concept of interval arithmetic was first suggested by Dwyer [1] in 1951. After developed by Moore [10], Moore and Yang [13]. Furthermore several authors have studied various aspects of the theory and applications of interval numbers in differential equations [13], [14], [15]. The sequence of interval numbers was first introduced by Chiao [20] and defined usual convergence. Bounded and convergence sequences spaces of interval numbers were introduced by Sengonul and Eryilmaz [] and showed that these spaces are complete metric space.

A set consisting of closed interval of real numbers x such that $a \leq x \leq b$ is called an interval number. A real interval can also be considered as a set. Denote the set of all real valued closed intervals by \square. Any member of \square is called closed interval and denoted by \bar{x}. Thus $\bar{x}=\{x \in \square: a \leq x \leq b\}$. In [20], an interval number is closed subset of real line \square.

Let x_{l} and x_{r} be the first and last points of the interval number \bar{x} respectively. For $\bar{x}_{1}, \bar{x}_{2} \in \square$, we have

$$
\begin{aligned}
& \bar{x}_{1}=\bar{x}_{2} \Leftrightarrow x_{1_{l}}=x_{2_{l}}, x_{1 r}=x_{2_{r}} . \\
& \bar{x}_{1}+\bar{x}_{2}=\left\{x \in \square: x_{1_{l}}+x_{2_{l}} \leq x \leq x_{1 r}+x_{2_{r}}\right\} \\
& \alpha \bar{x}=\left\{x \in \square: \alpha x_{1_{l}} \leq x \leq \alpha x_{1_{r}}\right\} \text { if } \alpha \geq 0 . \\
& \quad=\left\{x \in \square: \alpha x_{1_{r}} \leq x \leq \alpha x_{1_{l}}\right\} \text { if } \alpha<0 .
\end{aligned}
$$

and
$\bar{x}_{1} \cdot \bar{x}_{2}=\quad\left\{x \in \square: \min \left(x_{1_{l}} \cdot x_{2_{l}}, x_{1_{l}} \cdot x_{2_{r}}, x_{1_{r}} \cdot x_{2_{l}}, x_{1_{r}} \cdot x_{2_{r}}\right) \leq x \leq \max \left(x_{1_{l}} \cdot x_{2_{l}}, x_{1_{l}} \cdot x_{2_{r}}, x_{1_{r}} \cdot x_{2_{l}}, x_{1_{r}} \cdot x_{2_{r}}\right)\right\}$
The set of all interval numbers \square is complete metric space under the metric defined by -

$$
d(\bar{x}, \bar{y})=\max \left\{\left|x_{1_{l}}-x_{2_{l}}\right|,\left|x_{1_{r}}-x_{2_{r}}\right|\right\}(\text { see }[18])
$$

Let us consider the transformation $f: \square \rightarrow \square$ by $k \rightarrow f(k)=\bar{x}$ where $\bar{x}=\left(\bar{x}_{k}\right)$ which is known as sequence of interval numbers. \bar{x}_{k} denotes the $k^{\text {th }}$ term of the sequence $\bar{x}=\left(\bar{x}_{k}\right)$. The set of all sequences of interval numbers is denoted by w^{i} can be found in [18].

II. Definitions and Main Results

Let X be a linear metric space. A function $p: X \rightarrow R$ is called paranorm if -
(1) $p(x) \geq 0$ for all $x \in X$
(2) $p(-x)=p(x)$ for all $x \in X$
(3) $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$
(4) If $\left(\lambda_{n}\right)$ be a sequence of scalars such that $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left(x_{n}\right)$ be a sequence of vectors with

$$
p\left(x_{n}-x\right) \rightarrow 0 \text { as } n \rightarrow \infty, \text { then } p\left(\lambda_{n} x_{n}-\lambda x\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

A paranorm p for which $p(x)=0 \Rightarrow x=0$ is called total paranorm and the pair (X, p) is called a total paranormed space.

Let $\phi=\left(\phi_{n}\right)_{n}$ be a sequence of Young functions i.e. $\phi_{n}: \square^{+} \rightarrow \square^{+}$is an increasing and convex function such that $\phi_{n}(x)=0$ for $x>0$ and $\phi_{n}(0)=0$. The Musielak-Orlicz sequence space ℓ^{ϕ} is given by -

$$
\ell^{\phi}=\left\{x=\left(x_{n}\right)_{n}: \sum_{n} \phi_{n}\left(\lambda\left|x_{n}\right|\right)<\infty, \lambda>0\right\} \text {.This becomes Banach space under the }
$$ norm(Luxemburg)

$$
|x|_{\phi}=\inf \left\{\eta>0: \sum_{n} \phi_{n}\left(\frac{\left|x_{n}\right|}{\eta}\right) \leq 1, \eta>0\right\}
$$

Let $\phi=\left(\phi_{k}\right)$ be the sequence of Young functions. The space consisting of all those sequences $\bar{x}=\left(\bar{x}_{k}\right)$ in w^{i} such that $\phi\left(\frac{\left|\bar{x}_{k}\right|^{\frac{1}{k}}}{\eta}\right) \rightarrow 0$ as $k \rightarrow \infty$ for some $\eta>0$ is known as class of entire sequences of interval numbers defined by sequence of Young functions and is denoted by $\bar{\Gamma}_{\phi}$. The space consisting of all those sequences $\bar{x}=\left(\bar{x}_{k}\right)$ in w^{i} such that $\sup _{k}\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{\frac{1}{k}}}{\eta}\right)\right)<\infty$ for some $\eta>0$ is known as class of analytic sequences of interval numbers defined by sequence of Young functions and is denoted by $\bar{\Lambda}_{\phi}$.

Lemma 2.1: Let $\left(\alpha_{k}\right)$ and $\left(\beta_{k}\right)$ be sequences of real or complex numbers and $\left(p_{k}\right)$ be a bounded sequence of positive real numbers, then

$$
\left|\alpha_{\mathrm{k}}+\beta_{\mathrm{k}}\right|^{\mathrm{p}_{\mathrm{k}}} \leq \mathrm{D}\left(\left|\alpha_{\mathrm{k}}\right|^{\mathrm{p}_{\mathrm{k}}}+\left|\beta_{\mathrm{k}}\right|^{\mathrm{p}_{\mathrm{k}}}\right)
$$

and $\quad|\lambda|^{p_{k}} \leq \max \left(1,|\lambda|^{\mathrm{H}}\right)$
where $\quad \mathrm{D}=\max \left(1,|\lambda|^{\mathrm{H}-1}\right), \mathrm{H}=\operatorname{supp}_{\mathrm{k}} \quad, \lambda$ is any real or complex number.

Lemma 2.2: If d is translation invariant then
(a) $d\left(\bar{x}_{k}+\bar{y}_{k}, \overline{0}\right) \leq d\left(\bar{x}_{k}, \overline{0}\right)+d\left(\bar{y}_{k}, \overline{0}\right)$
(b) $d\left(\alpha \bar{x}_{k}, \overline{0}\right) \leq|\alpha| d\left(\bar{x}_{k}, \overline{0}\right),|\alpha|>1$.

Let $\bar{x}=\left(\bar{x}_{k}\right)$ be sequence of interval numbers, $p=\left(p_{k}\right)$ be sequence of strictly positive integers, $A=\left(a_{n k}\right)$ be non negative regular matrix and $\phi=\left(\phi_{k}\right)$ be a sequence of Young functions, we define the following classes of sequences of interval numbers as follows:

$$
\begin{aligned}
& \bar{\Gamma}_{\phi}(A, p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \lim _{k \rightarrow \infty} \sum_{k} a_{n k}\left[d\left[\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p_{k}}=0\right\}\right. \\
& \bar{\Lambda}_{\phi}(A, p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \sup _{n}\left(\sum_{k} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p_{k}}\right)\right]<\infty\right\}
\end{aligned}
$$

for some $\eta>0$. We can specialize these spaces as follows:
(a) If $A=I$, the unit matrix then -

$$
\begin{aligned}
& \bar{\Gamma}_{\phi}(I, p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \lim _{k \rightarrow \infty}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p_{k}}=0\right\}\right. \\
& \bar{\Lambda}_{\phi}(I, p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \sup _{k}\left(\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right]^{p_{k}}\right)<\infty\right\}
\end{aligned}
$$

(b) If we take $\phi(x)=x$ then we get -

$$
\begin{aligned}
& \bar{\Gamma}(A, p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \lim _{k \rightarrow \infty} \sum_{k} a_{n k}\left[d\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p_{k}}=0\right\} \\
& \bar{\Lambda}(A, p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \sup _{n}\left(\sum_{k} a_{n k}\left[d\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p_{k}}\right)<\infty\right\}
\end{aligned}
$$

(c) If $A=\left(a_{n k}\right)$ is Cesaro matrix of order 1 and $p_{k}=p$ then we have -

$$
\bar{\Gamma}_{\phi}(p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \lim _{k \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p}\right\}=0\right.
$$

$$
\bar{\Lambda}_{\phi}(p)=\left\{\bar{x}=\left(\bar{x}_{k}\right): \sup _{n}\left(\frac{1}{n} \sum_{k=1}^{n}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)^{p}\right)<\infty\right\}\right.
$$

The space $\bar{\Gamma}$ is defined as follows;

$$
\bar{\Gamma}=\left\{\bar{x}=\left(\bar{x}_{k}\right): \lim _{k \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}=0\right\} \text { for some } \eta>0
$$

III. Main Results

Theorem 3.1: If d is translation invariant then the class of sequence $\bar{\Gamma}_{\phi}(p)$ is closed under addition and scalar multiplication of interval numbers.
Proof: Let $\bar{x}=\left(\bar{x}_{k}\right) \in \bar{\Gamma}_{\phi}(p)$ and $\bar{y}=\left(\bar{y}_{k}\right) \in \bar{\Gamma}_{\phi}(p)$
In order to prove the result, we need to find some $\eta_{3}>0$ such that

$$
\sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\left(a \bar{x}_{k}+b \bar{x}_{k}\right)\right|^{1 / k}}{\eta_{3}}, 0\right)\right]^{p} \rightarrow 0 \quad \text { as } k \rightarrow \infty\right.
$$

Since $\bar{x}=\left(\bar{x}_{k}\right) \in \bar{\Gamma}_{\phi}(p)$ and $\bar{y}=\left(\bar{y}_{k}\right) \in \bar{\Gamma}_{\phi}(p)$, there exists some $\eta_{1}>0$ and $\eta_{2}>0$ such that -

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta_{1}}, 0\right)\right]^{p} \rightarrow 0 \text { as } k \rightarrow \infty\right. \text { and } \\
& \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\bar{y}_{k}\right|^{1 / k}}{\eta_{2}}, 0\right)\right]\right]^{p} \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Since ϕ is non-decreasing, we have

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\left(a \bar{x}_{k}+b \bar{y}_{k}\right)\right|^{1 / k}}{\eta_{3}}, 0\right]\right]^{p} \leq \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\left(a \bar{x}_{k}\right)\right|^{1 / k}}{\eta_{3}}+\frac{\left|\left(b \bar{y}_{k}\right)\right|^{1 / k}}{\eta_{3}}, 0\right)\right]^{p}\right.\right. \\
&\left.\left.\leq \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{|a|^{1 / k}\left|\bar{x}_{k}\right|^{1 / k}}{\eta_{3}}+\frac{|b|^{1 / k}\left|\bar{y}_{k}\right|^{1 / k}}{\eta_{3}}, 0\right)\right]\right]^{p}\right)\right]^{p} \\
& \leq \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left.|a| \bar{x}_{k}\right|^{1 / k}}{\eta_{3}}+\frac{|b|\left|\bar{y}_{k}\right|^{1 / k}}{\eta_{3}}, 0\right)\right)\right]^{p}
\end{aligned}
$$

Take η_{3} such that

$$
\frac{1}{\eta_{3}}=\min \left\{\frac{1}{|a|^{p}} \frac{1}{\eta_{1}}, \frac{1}{|b|^{p}} \frac{1}{\eta_{2}}\right\}
$$

Then,

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\left(a \bar{x}_{k}+b \bar{y}_{k}\right)\right|^{1 / k}}{\eta_{3}}, 0\right)\right]^{p} \leq \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta_{1}}+\frac{\left|\bar{y}_{k}\right|^{1 / k}}{\eta_{2}}, 0\right)\right]^{p}\right.\right. \\
& \qquad \leq \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta_{1}}, 0\right)\right]^{p}+\sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\bar{y}_{k}\right|^{1 / k}}{\eta_{2}}, 0\right)\right]^{p}\right]^{p}\right. \\
& \text { Hence } \quad \sum_{k=1}^{n} \frac{1}{n}\left[d\left(\phi\left(\frac{\left|\left(a \bar{x}_{k}+b \bar{y}_{k}\right)\right|^{1 / k}}{\eta_{3}}, 0\right)\right]^{p} \rightarrow 0 \text { as } k \rightarrow \infty .\right.
\end{aligned}
$$

So $a \bar{x}_{k}+b \bar{x}_{k} \in \bar{\Gamma}_{\phi}(p)$. This completes the proof.
Theorem 3.2. The class of sequence $\bar{\Gamma}_{\phi}(p)$ is a complete metric space under the metric ' h ' defined by -

$$
h(\bar{x}, \bar{y})=\sup _{n}\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left|\bar{x}_{k}-\bar{y}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right]^{p}
$$

Proof. Let $\left\{\bar{x}^{(i)}\right\}$ be Cauchy sequence in $\bar{\Gamma}_{\phi}(p)$.
Then for any given $\varepsilon>0$ there exists a positive integer n_{1} such that

$$
h\left(\bar{x}^{(i)}, \bar{y}^{(j)}\right)<\varepsilon \quad \text { for all } \quad i, j \geq n_{1}
$$

Therefore

$$
\sup _{n}\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left|\bar{x}_{k}^{(i)}-\bar{y}_{k}^{(j)}\right|^{1 / k}}{\eta}, 0\right)\right]^{p}<\varepsilon \quad \text { for all } \quad i, j \geq n_{1} . \text { Consequently }\left\{\bar{x}_{k}^{(i)}\right\}\right. \text { is a Cauchy }
$$

sequence in the metric space of interval numbers which is complete and so $\bar{x}_{k}^{(i)} \rightarrow \bar{x}_{k}$ as $i \rightarrow \infty$.
Once can find that -

$$
\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left|\bar{x}_{k}^{(i)}-\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]\right]^{p}<\varepsilon, \quad i \geq n_{1}
$$

Now,

$$
\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p} \leq\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left.\left|\bar{x}_{k}-\bar{x}_{k}\right|^{\left(n_{1}\right)}\right|^{1 / k}}{\eta}, 0\right)\right]^{p}+\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left(\left|\bar{x}_{k}^{n_{1}}\right|^{1 / k}\right.}{\eta}, 0\right)\right]^{p}\right.\right.\right.
$$

$<\varepsilon+0$ as $n \rightarrow \infty$.
Thus $\left[\frac{1}{n} \sum_{k=1}^{n} d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right]^{p}<\varepsilon$
and so $\left(\bar{x}_{k}\right) \in \bar{\Gamma}_{\phi}(p)$.
Hence $\bar{\Gamma}_{\phi}(p)$ is a complete metric space. This completes the proof.
Theorem 3.3. Let $\bar{x}=\left(\bar{x}_{k}\right)$ be sequence of interval numbers. The sequence class $\bar{\Gamma}_{\phi}(A, p)$ is complete w.r.t the topology generated by the paranorm h defined by -

$$
h(\bar{x})=\sup _{k}\left(\sum_{k=1}^{n} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]^{p_{k}}\right)^{\frac{1}{M}}\right.
$$

Where $M=\max \left\{1, \sup _{k}\left(\frac{p_{k}}{M}\right)\right\}$.
Proof. Obviously $h(\theta)=0$ and $h(-\bar{x})=h(\bar{x})$. It can also be easily seen that
$h(\bar{x}+\bar{y}) \leq h(\bar{x})+h(\bar{y})$ as d is translation invariant.
Now for any scalar λ, we have $|\lambda|^{p_{k} / M}<\max (1, \sup |\lambda|)$, so that
$h(\lambda \bar{x})<\max (1, \sup |\lambda|), \lambda$ fixed implies $\lambda \bar{x} \rightarrow \theta$. Now let $\lambda \rightarrow \theta, \bar{x}$ fixed for s up $|\lambda|<1$, we have

$$
\left(\sum_{k=1}^{n} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right]^{p_{k}}\right]^{\frac{1}{M}}<\varepsilon \text { for some } N>N(\varepsilon)
$$

Also for $1 \leq n \leq N$ and $\left(\sum_{k=1}^{n} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right)^{p_{k}}\right)^{\frac{1}{M}}<\varepsilon \quad$ there exists $\quad \mathrm{m} \quad$ such that

$$
\left(\sum_{k=m}^{n} a_{n k}\left[d\left(\phi\left(\frac{\left|\lambda \bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right)^{p_{k}}\right)^{\frac{1}{M}}<\varepsilon
$$

Taking λ small enough, we then find

$$
\left(\sum_{k=m}^{n} a_{n k}\left[d\left(\phi\left(\frac{\left|\lambda \bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)^{p_{k}}\right)^{\frac{1}{M}}<2 \varepsilon \text { for all } k\right.
$$

Hence $h(\lambda \bar{x}) \rightarrow 0$ as $\lambda \rightarrow 0$. So h is a paranorm on $\bar{\Gamma}_{\phi}(A, p)$.
To show the completeness, let $\left\{\bar{x}^{-(i)}\right\}$ be Cauchy sequence in $\bar{\Gamma}_{\phi}(A, p)$.
Then for given $\varepsilon>0$ there exists positive integer r such that -

$$
\left.\sum a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}^{i}-\bar{x}_{k}^{j}\right|^{1 / k}}{\eta}, 0\right)\right)\right]^{p_{k}}\right)^{\frac{1}{M}}<\varepsilon \text { for all } j \rightarrow \infty i, j \geq r
$$

Since d is translation invariant, so

$$
\left(\sum a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}-\bar{x}_{k}^{j}\right|^{1 / k}}{\eta}, 0\right)\right]^{p_{k}}\right)^{\frac{1}{M}}<\varepsilon \text { for all } i, j \geq r . \text { and each } \mathrm{n} .\right.
$$

Hence

$$
\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}^{i}-\bar{x}_{k}^{j}\right|^{1 / k}}{\eta}, 0\right)\right]<\varepsilon \text { for all } \quad i, j \geq r\right.
$$

Therefore $\left\{\bar{x}^{(i)}\right\}$ is a Cauchy sequence in the metric space of interval numbers which is complete and hence $\bar{x}^{(j)} \rightarrow \bar{x}$ as $j \rightarrow \infty$
Keeping $r_{0} \geq r$ and letting $j \rightarrow \infty$, once can find that -

$$
\left(\sum a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}-\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]\right)<\varepsilon \text { for all } \quad r_{0} \geq r\right.
$$

Since d is translation invariant, therefore

$$
\left(\sum a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}-\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right]^{p_{k}}\right)^{1 / M}<\varepsilon
$$

i.e $\bar{x}^{(i)} \rightarrow \bar{x}$ in $\bar{\Gamma}_{\phi}(A, p)$. It can be easily seen that $\bar{x} \in \bar{\Gamma}_{\phi}(A, p)$.

Thus $\bar{\Gamma}_{\phi}(A, p)$ is complete. This completes the proof.

Theorem 3.4. If $0<\inf p_{k} \leq p_{k} \leq 1$, then $\bar{\Gamma}_{\phi}(A, p) \subset \bar{\Gamma}_{\phi}(A)$.
Proof. Let $\bar{x}=\left(\bar{x}_{k}\right) \in \bar{\Gamma}_{\phi}(A, p)$. Since $0<\inf p_{k} \leq p_{k} \leq 1$, the result follows from the following inequality

$$
\sum_{k} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right] \leq \sum_{k} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right)\right]^{p_{k}}\right.
$$

Theorem 3.5. If $1 \leq p_{k} \leq \sup p_{k}<\infty$, then $\bar{\Gamma}_{\phi}(A) \subset \bar{\Gamma}_{\phi}(A, p)$..
Proof. $\bar{x}=\left(\bar{x}_{k}\right) \in \bar{\Gamma}_{\phi}(A)$. Since $1 \leq p_{k} \leq \sup p_{k}<\infty$ then for each
$0<\varepsilon<1$ there exist a positive integer n_{0} such that

$$
\sum_{k} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right] \leq \varepsilon<1 \text { for some } n \geq n_{0}\right.
$$

The result follows from the following inequality

$$
\sum_{k} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]\right]^{p_{k}} \leq \sum_{k} a_{n k}\left[d\left(\phi\left(\frac{\left|\bar{x}_{k}\right|^{1 / k}}{\eta}, 0\right)\right]\right.
$$

Theorem 3.6. Suppose $\bar{x}=\left(\overline{x_{k}}\right)$ is strongly $\Delta_{(v, r)}^{s}$-lacunary strongly summable to X_{0}. Then

$$
\lim _{p \rightarrow \infty} \frac{1}{h_{p}} \sum_{k \in I_{p}} d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right)=0
$$

Now the result follows from the following inequality:

$$
\sum_{k \in I_{p}} d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon \operatorname{card}\left\{k \leq n: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\}
$$

Theorem 3.7. If a sequence $\bar{x}=\left(\overline{x_{k}}\right)$ of interval numbers is $\Delta_{(v, r)}^{s}$-bounded and $\Delta_{(v, r)}^{s}$ - statistically convergent, then it is $\Delta_{(v, r)}^{s}$ - Cesàro strongly summable.
Proof. Suppose $\bar{x}=\left(\overline{x_{k}}\right)$ is $\Delta_{(v, r)}^{s}$-bounded and $\Delta_{(v, r)}^{s}$ - statistically convergent to \bar{x}_{0}. Since $\bar{x}=\left(\overline{x_{k}}\right)$ is $\Delta_{(v, r)}^{s}$-bounded, we can find a interval number M such that

$$
d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \leq M \text { for all } \mathrm{k} \in \mathrm{~N}
$$

Again since $\bar{x}=\left(\overline{x_{k}}\right)$ is $\Delta_{(v, r)}^{s}$ - statistically convergent to \bar{x}_{0}, for every $\varepsilon>0$

$$
\lim _{n} \frac{1}{n} \operatorname{card}\left\{k \leq n: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\}=0
$$

Now the result follows from the following inequality

$$
\frac{1}{n} \sum_{1 \leq k \leq n} d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right)=
$$

$$
\begin{aligned}
& \frac{1}{n} \sum_{\substack{1 \leq k \leq n \\
d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon}} d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right)+\sum_{\substack{1 \leq k \leq n \\
d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right)<\varepsilon}} d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \\
& \leq \frac{M}{n} \operatorname{card}\left\{k \leq n: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\}+\varepsilon
\end{aligned}
$$

Theorem 3.8. Let θ be a lacunary sequence. Then if a sequence $\bar{x}=\left(\overline{x_{k}}\right)$ is $\Delta_{(v, r)}^{s}$-bounded and $\Delta_{(v, r)}^{s}$ lacunary statistically convergent, then it is $\Delta_{(v, r)}^{s}$ - lacunary strongly summable.
Proof. Proof follows by similar arguments as applied to prove above Theorem.
Theorem 3.9. Let θ be a lacunary sequence and $\bar{x}=\left(\overline{x_{k}}\right)$ be $\Delta_{(v, r)}^{s}$-bounded. Then X is $\Delta_{(v, r)}^{s}$ - lacunary statistically convergent if and only if it is $\Delta_{(v, r)}^{s}$ - lacunary strongly summable.
Proof. Proof follows by combining the Theorems 3.1 and 3.3.
Theorem 3.10. If a sequence $\bar{x}=\left(\overline{x_{k}}\right)$ is $\Delta_{(v, r)}^{s}$ - statistically convergent and $\operatorname{lim~inf}_{\mathrm{p}}\left(\frac{h_{p}}{p}\right)>0$ then it is
$\Delta_{(v, r)}^{s}$-lacunary statistically convergent.
Proof. Assume the given conditions. For a given $\varepsilon>0$, we have

$$
\left\{k \in I_{p}: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\} \subset\left\{k \leq n: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\}
$$

Hence the proof follows from the following inequality:

$$
\begin{gathered}
\frac{1}{p} \operatorname{card}\left\{k \leq p: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\} \geq \frac{1}{p} \operatorname{card}\left\{k \in I_{p}: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\} \\
=\frac{h_{p}}{p} \frac{1}{h_{p}} \operatorname{card}\left\{k \in I_{p}: d\left(\Delta_{(v, r)}^{s} \bar{x}_{k}, \bar{x}_{0}\right) \geq \varepsilon\right\}
\end{gathered}
$$

References

[1]. P.S Dwyer, Linear Computation, New York, Wiley(1951).
[2]. M.Et. and R. Colak, On generalized difference sequence spaces, Soochow Jour. Math. 21 (1995) 377-386.
[3]. H Fast, Sur la convergence statistique, Colloq. Math. (1951) 241-244.
[4]. J.A Fridy. and C Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(12) (1997) 3625-3631.
[5]. A.R Freedman,J.JSember. and M Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc. 37(3) (1978) 508-520.
[6]. H Kizma, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981) 168-176.
[7]. M Matloka, Sequences of fuzzy numbers, BUSEFAL 28 (1986) 28-37.
[8]. I.J Maddox, A Tauberian condition for statistical convergence, Math. Proc. Camb. Phil. Soc. 106 (1989) 277-280.
[9]. A Esi,Lacunary sequence space of interval numbers. Thai Journal of Mathematics, 10(2012): 445-451.
[10]. R.E Moore,Automatic error analysis in digital computation, LSMD-48421, Lockheed Missiles and Space Company (1959).
[11]. D Rath and B.C Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian J. Pure \& Appl. Math. 27(2) (1996) 197-206.
[12]. I.J Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(1959) 3621-4375.
[13]. R.E Moore and C. T Yang,Interval Analysis-1, LSMD-285875, Lockheed Missiles and Space Company (1962).
[14]. R.E Moore and C. T Yang, Theory of an interval algebra and its applications to numeric analysis, RAAG Memories-II, Gaukutsu Bunken Fukeyu-kai(1958)
[15]. S Markov,Quisilinear spaces and their relation to vector space. Electronic Journal on Mathematics of Computation 2(2005).
[16]. B.C Tripathy and A Esi, A new type of difference sequence spaces, Int. Jour. of Sci. \& Tech. 1 (2006) 11-14.
[17]. B.C Tripathy and A Esi and B. K Tripathy, On a new type of generalized difference Cesàro Sequence spaces, Soochow J. Math. 31(3) (2005) 333-340.
[18]. M Sengonul. and A Eryimaz., On the sequence space of interval numbers, Thai Journal of Mathematics, 8(2010): 503-510.
[19]. Mursaleen, λ - Statistical Convergence, Math. Slovaca,50(2000):111-115.
[20]. Kou-Ping Chiao, Fundemental properties of interval vector max-norm, TamsuiOxford Journal of Mathematics, 18(2002): 219-223.
[21]. A Esi., λ - Sequence spaces of interval numbers, Appl. Math. Inf. Sci 8(3)(2014): 1099-1102.
[22]. A. Zygmund, Trigonometric series, Vol. 2, Cambridge, 1993.
Dr. Manmohan Das" Summability Classes of Sequences of Interval Numbers" International Journal of Engineering Science Invention (IJESI), vol. 07, no. 12, 2018, pp 73-81

