
International Journal of Engineering Science Invention (IJESI)

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org ||Volume 7 Issue 9 Ver II || Sep 2018 || PP 61-67

 www.ijesi.org 61 | Page

Graph Theory Based Software Clustering Algorithm

M. Amudhan
1
, K. Sangavai

2

1
(Department of Computer Science and Engineering, PSG College of Technology, India)
2
(Assistant Professor, Department of Mathematics, PSG College of Technology, India)

Corresponding Author: M. Amudhan

Abstract : Modern software systems are scaling up manifold in terms of size as well as complexity. The ever

demanding field of software engineering makes software project development even more challenging. The

implementation of such software associates an extensive amount of classes or subsystems. Clustering is a

worthwhile method to group data entities. Graph theory can aid us in the understanding of the abstract layer of

software. In this paper, a novel graph theory based software clustering algorithm is proposed.

Keywords –Graph theory, Algorithms, Software Clustering, Degree preserving spanning tree

--- --------

Date of Submission: 07-09-2018 Date of acceptance: 24-09-2018

-- ---------------

I. INTRODUCTION
 Software engineering is the systematic application of engineering to the development of software. It

was introduced to address the issues of low-quality software projects. Software design is a process to transform

user requirements into some suitable form, which helps the programmer in coding and implementation of the

software. Software design is the first step in the Software Development Life Cycle (SDLC). Object–Oriented

Analysis (OOA) is the procedure of identifying requirements and developing specifications in terms of a

software system‟s object model, which contains interacting objects where the object is an element in an object–

oriented environment that may have a physical or a conceptual existence [8, 10].

1.1. Software Design and Class Diagram

 A class represents a collection of objects having the same characteristic properties and exhibit common

behavior. Any complex system is better understood by representing them in the form of diagrams. Class

diagrams basically represent the object-oriented view of a system, which is static in nature. It shows

relationships between classes, objects, attributes, and operations. Unified Modeling Language (UML) is a

standardized modeling language used to construct and visualize commodities of a software system. Such UML

diagrams help us understand the system in a straightforward and improved way. UML defines diverse diagrams

to cover most of the aspects of a system. Class diagrams can be flawlessly mapped to graphs where vertices

represent classes, while edges correspond to a specific kind of relationship like association, generalization or

composition [3, 4].

1.2. Graph theory and Spanning trees

 A graph G = (V, E) is a mathematical structure consisting of two finite sets V and E. The elements of V

are called vertices (or nodes), and the elements of E are called edges. Each edge has a set of one or two vertices

associated to it, which are called its endpoints. Graphs are visually represented by dots (vertices) connected by

lines (edges). Graph theory is the study of graphs which are used to model pairwise relations between objects. A

colossal amount of social, technological and biological networks can also be represented as graphs. A spanning

tree of a graph G is a connected acyclic subgraph which includes all the vertices of G. Spanning trees play an

important role in the area of research under graphs and networks due to their nature of minimally connecting

subgraph. There are many kinds of spanning trees available in the literature of graph theory. One such special

kind of spanning trees called Vertex Subset Degree Preserving Spanning Trees was introduced and extensively

studied by Anitha. R and Sangavai. K in [2]. Vertex Subset Degree Preserving Spanning Tree is defined as a

spanning tree T of the graph G (V, E) such that degT(vi) = degG(vi) for all vi in A, which is a nonempty subset of

V and is denoted as A-DPST. This new class of spanning trees has many applications in various kinds of

networks and one such application in sensor networks is established in [12]. In [12], the authors proposed a

distance based routing algorithm for a sensor network using A-DPST. For all the definitions and concepts used

in this paper related to graph theory, we referred [9].

Graph Theory Based Software Clustering Algorithm

 www.ijesi.org 62 | Page

1.3. Graphs and Computer Science

 Graphs have been useful in plentiful fields of computer science. In the software development lifecycle,

during Requirements Specification, Data Flow Diagrams (DFDs) are constructed. These are essentially graphs

in which the vertices represent transformations and edges characterize data flows. Finite State Machines and

Petri Nets are used in capturing the requirements of synchronous and asynchronous systems due to the alluring

graphics scheme. During design, Graphical Design Notation (GDN) is essentially a graph used for describing

relations among modules. In such graph representations, directed edges represent the dependency of one

software component on another. During testing, the control flow of a program uses directed graphs to represent

the sequence of instruction execution. Also, Software process management has been aided by the use of network

diagrams for calculating early start and late finish dates (CPM and PERT techniques) [5].

1.4. Class diagrams

 Class diagrams can be perfectly mapped to graphs where vertices represent the classes, while edges

correspond to a selected type of relationship (e.g. association, generalization, composition, etc.) Let us assume a

graph G = (V, E) represents the class diagram of the object-oriented system. V is the set of vertices

corresponding to the classes of the system while E is the set of all edges representing a particular kind of

relationship between the classes. For example, the process of a sub-class inheriting the functionality of a

superclass is known as generalization. It is symbolized with a straight connected line with a closed arrowhead

pointing towards the superclass. If generalizations are to be represented, a directed edge (p, q) ∈ E indicates the

inheritance of p from q [4]. Consider the simple design in Figure 1.1.

Figure 1.1

The graphical representation and the generalization matrix of the system design in Figure 1.1 is given in Figure

1.2

Figure 1.2

1.5. Clustering

 Clustering is the method of recognizing an analogous group of entities in data. Entities within a cluster

have the same characteristics and differ from entities in other clusters. Clustering algorithms are applied for

software modularization. Modularizing a software is done by grouping together related software entities, thereby

providing a sophisticated understanding of the system. Software designers incline to design modules such that

they can be executed and compiled separately and independently. The modular design follows „divide and

conquer‟ problem-solving strategy. In the OO systems domain, clustering can be viewed as the process of

partitioning the system into sets of strongly communicating classes or hierarchy of classes. Such dense

communities of classes exhibiting intense interaction in terms of method invocations might imply relevance of

functionality or even possible reusable components [11]. Clustering can also be helpful in reducing the search

space of algorithms that seek to identify patterns or specific structures within an OO system. There are several

Graph Theory Based Software Clustering Algorithm

 www.ijesi.org 63 | Page

methods of software clustering available in the literature. Among those, spectral graph partitioning techniques

first appeared in the early seventies in the research work of Donath and Hoffman [5] and Fiedler [6], [7]. They

explored the properties of the algebraic representations of graphs (Adjacency Matrix, Laplacian Matrix) and

introduced the idea of using Eigen vectors of the Laplacian Matrix to partition graphs. In [1], Alexander

Chatzigeorgiou et.al proposed the method of software clustering using the concept of the Laplacian matrix of the

graph corresponding to a system.

II. Proposed Algorithm
 In general, software clustering aims at partitioning a software system into subsets of

modules/components, so that the modules in each cluster share some common trait. A common criterion for

partitioning is to come up with clusters that exhibit high consistency and low coupling. Therefore, we require

disjoint clusters of the classes. In this paper, we propose a novel clustering algorithm using the concept of vertex

subset degree preserving spanning trees. Using the concept of A-DPST we form a spanning forest in the graph

corresponding to the class diagram through which we are achieving our goal of forming clusters. The advantage

of our proposed algorithm is the identification of cluster heads also along with clustering. These cluster heads

are a distinctive member of the respective cluster, based on their importance in the given system. The flow of

execution of our algorithm is described in the flowchart in Figure 2.1.

2.1. Flow Chart

Figure 2.1

2.2 Proposed Algorithm

 This algorithm starts with the formation of the adjacency matrix of the graph corresponding to the class

diagram of the system by writing 0‟s in the non-adjacent positions of the vertices and corresponding edge

weights in the adjacent positions. X is the array of all vertices along with their weights, which are calculated as

the sum of the edge weights of those incidents onto it (respective row/column sum in the adjacency matrix) in

the graph. xi is the i
th

 vertex in X. VT is the set of all vertices that are already visited. N[T] is the closed

neighborhood of vertices in T. At the end of the algorithm's progress, X will be empty and VT will contain all

the vertices of the graph. T becomes a spanning forest of the graph whose components are distinct clusters and

C is the set of all cluster heads.

Algorithm:

Graph Theory Based Software Clustering Algorithm

 www.ijesi.org 64 | Page

Input: Weighted adjacency matrix of the graph G (V, E) corresponding to the given class diagram of an object-

oriented system containing n classes.

Output: Clustered classes with cluster heads.

1. Sort the vertices in a non-increasing order, based on their weight and store them in array X

2. Initialize i =0, VT=Ø, C=Ø,and T=Ø

3. Consider the vertex xi

4. If xi∉ N[T] and the inclusion of xi does not form a circuit, then

i. C= C ∪ {xi}

ii. VT = VT ∪ {N[xi]}

iii. Include VT along with their edges to T

5. Increment i and repeat step4 until the array X is traversed completely.

6. For any vertex xi not in T,

Include xi along with the maximum weighted edge.

7. T contains all the clusters and C contains all cluster heads.

2.3. Illustration of the Algorithm

 To demonstrate this clustering technique let us consider a hypothetical object-oriented system

consisting of an Airport model system given in Figure 2.2. In this system, there are totally 11 classes with their

own attributes and methods. All these classes communicate among themselves to ensure the effective

functioning of the system. This system is modeled as a graph by representing each class as a vertex and their

relationship as an edge between the corresponding vertices. The weight associated with the edges is based on the

multiplicity. Multiplicity is a definition of the cardinality of some collection of elements by providing an

inclusive interval of non-negative integers to specify the allowable number of instances of the described

element. Multiplicity interval has some lower bound and upper bound. Here, we assigned the multiplicity upper

bound of the relation as the edge weight.

 For example, the association between the classes, „Plane Model‟ and „Seat‟ has a multiplicity upper

bound of 250. This means an individual plane model may contain a maximum of 250 seats. Hence the edge

connecting the vertices representing these two classes is assigned a weight of 250.

Figure 2.2

Graph Theory Based Software Clustering Algorithm

 www.ijesi.org 65 | Page

Figure 2.3

The following is the table of the vertices and their weights

Vertex 1 2 3 4 5 6 7 8 9 10 11

Weight 110 102 2 20 261 251 7 12 1 2 4

Table 2.1

After sorting the vertices in non-increasing order of their weight, the array X becomes,

X = {5, 6, 1, 2, 4, 8, 7, 11, 3, 10, 9}

Iteration 1:

Initially,

i = 0, VT = Ø, C = Ø and T = Ø

x0= 5

C= {5}

VT= {5, 2, 4, 6}

Iteration 2:

i = 1, VT = {5, 2, 4, 6}, C = {5}

x1= 6

x1∈N[T]

Hence ignore.

Iteration 3:

i = 2, VT = {5, 2, 4, 6}, C = {5}

x2 = 1

Adding x2 will form a circuit.

Hence ignore.

Iteration 4:

i = 3, VT = {5, 2, 4, 6}, C = {5}

x3 = 2

x3 ∈N[T]

Hence ignore.

Iteration 5:

i = 4, VT = {5, 2, 4, 6}, C = {5}

x4 = 4

x4 ∈N[T]

Hence ignore.

Iteration 6:

Graph Theory Based Software Clustering Algorithm

 www.ijesi.org 66 | Page

i = 5, VT = {5, 2, 4, 6}, C = {5}

x5 = 8

x5 ∈N[T]

Hence ignore.

Iteration 7:

i = 6, VT = {5, 2, 4, 6}, C = {5}

x6= 7

C= {5, 7}

VT= {5, 2, 4, 6, 8, 9, 10}

Iteration 8:

i = 7, VT = {5, 2, 4, 6, 7, 8, 9, 10}, C = {5, 7}

x7= 11

x7 ∈N[T]

Hence ignore.

Iteration 9:

i = 8, VT = {5, 2, 4, 6, 7, 8, 9, 10}, C = {5, 7}

x8= 3

x8 ∈ N[T]

Hence ignore.

Iteration 10:

i = 9, VT = {5, 2, 4, 6, 7, 8, 9, 10}, C = {5, 7}

x9= 10

x9 ∈ N[T]

Hence ignore.

Iteration 11:

i = 10, VT = {5, 2, 4, 6, 7, 8, 9, 10}, C = {5, 7}

x10= 9

x10 ∈ N[T]

Hence ignore.

Iteration 12:

And the process ends by connecting the other remaining vertices 1, 3 and 11 using the maximum weight edge to

either of the clusters. Therefore, the vertex set of the resulting tree VT = {5, 2, 4, 6, 7, 8, 9, 10, 1, 3, 11} = V

And the cluster head set becomes C = {5, 7}

The resulting T which is a spanning forest, is in Figure 2.4. Therefore, the classes are clustered into two, whose

cluster heads are 5 and 7 respectively.

Figure 2.4

Graph Theory Based Software Clustering Algorithm

 www.ijesi.org 67 | Page

III. Implementation And Sample Output
 In this section, the performance result of the proposed clustering algorithm is presented. The algorithm

is implemented in Java. The weighted adjacency matrix of the graph corresponding to the class diagram of the

Airport model system is given as the input. By using which the graph associated with the system is generated. In

this graph, the nodes represent the different classes of the system and the edges correspond to the relationship

between the corresponding vertices. The weights associated with the edges are the multiplicity upper bound.

After running our algorithm, the graph is clustered into two clusters whose cluster heads are node 5 and node 7.

The outputs after the run of our algorithm on Airport model system obtained using JFrame given in Figure 3.1.

Figure 3.1(a) Figure 3.1(b)

Figure 3.1(a) represents the graph and Figure 3.1(b) represents the spanning forest with two clusters whose

cluster heads are node 5 and 7 respectively

.

IV. Conclusions And Future Work
 In the software domain, a significant application of cluster analysis is to modularize a software system

by grouping together software entities that are similar or related to each other. During development, most of the

effort is usually devoted to the understanding of the software system. This task is facilitated if a system is well

clustered, making it easier to change and evaluate the side effects of a change. In this paper, we have proposed a

novel software clustering algorithm using the concept of vertex subset degree preserving spanning trees. We

also illustrated by considering an Airport model system. This algorithm is implemented in JAVA and its

correctness is verified by applying it to the Airport model system. The other concepts of graph theory like

dominating sets, independent sets etc. could also be used for serving the similar needs in software design.

References
[1]. Alexander Chatzigeorgiou, Nikolaos Tsantalis, George Stephanides, “Application of Graph Theory to OO Software Engineering”, WISER '06

Proceedings of the 2006 international workshop on interdisciplinary software engineering research, 2006.

[2]. Anitha. R and Sangavai. K, “On Vertex Subset Degree Preserving Spanning Trees”, International Journal of Computational and Applied Mathematics,

Vol. 2, No. 2, pp. 115–123, 2007.

[3]. Booch G, Maksimchuk R A, Engel M W, Young B J, Conallen J, Houstan K A, “Object Oriented Analysis and Design with Applications”, Third

edition, Addison-Wesley, 2007

[4]. Booch G, Rumbaugh J and Jacobson I, “The Unified Modeling Language User Guide”, Second edition, Addison Wesley Professional, 2005.

[5]. Donath, W. E., and Hoffman, A. J. Lower bounds for the partitioning of graphs. IBM Journal of Research and Development, 17, (Sep. 1973), pp. 420-

425.

[6]. Fiedler, M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98), (1973), pp. 298-305.

[7]. Fiedler, M. A property of eigenvectors of non-negative symmetric matrices and its applications to graph theory. Czechoslovak Mathematical Journal,

25(100), (1975), pp. 619-633.

[8]. Ghezzi, C., Jazayeri, M., and Mandrioli, D. Fundamentals of Software Engineering. 2nd edition, Prentice Hall, Upper Saddle River, NJ, 2003.

[9]. Jonathan Gross, Jay Yellen, “Graph Theory and Its Applications”, CRC Press, New York, 2006.

[10]. Roger S Pressman, “Software Engineering - A practitioner‟s approach”, McGraw Hill International Edition, Singapore, 2009

[11]. Roman Bazylevych, Roman Burtnyk, “Algorithms for software clustering and modularization”, 2015 Xth International Scientific and Technical

Conference "Computer Sciences and Information Technologies" (CSIT), 2015.

[12]. Sangavai. K and Anitha. R, “Application of Vertex Subset Degree Preserving Spanning Trees in Sensor Networks”, Discrete Mathematics, Algorithms

and Applications Vol.2, No. 3 277–289, 2010.

M. Amudhan "Graph Theory Based Software Clustering Algorithm "International Journal of Engineering Science

Invention (IJESI), vol. 07, no. 09, 2018, pp 61-67

