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Abstract : A dynamical model of melting for simple metals is developed, constructed, and tested. Model is a 

trihedral pyramid of identical hard spheres, the base of which can be uniformly expanded in the horizontal 

plane. With the help of this mechanical model, the stability limit of nanoscale pyramidal clusters of elemental 

metals is investigated. Extrapolation of obtained results to the limit of infinite crystal should lead to the credible 

estimation of the relative thermal expansion of metallic crystals at which they start melting. 
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I. INTRODUCTION 
Since the atomic structure of a condensed substance determines its electronic structure, the step-wise 

changes in the atomic structure in result of melting are accompanied by radical changes in whole complex of 

physical-chemical properties. Studying the nature of condensed matter transformation during melting is not only 

of high academic interest – this problem is also important from the point of view of practical applications in 

metallurgy because many technological processes – industrial production of metals, welding, and soldering of 

metallic parts, etc. – are associated just with the melting process. 

Why does the metal melt or what factors determine stability of its crystalline lattice? Obtaining answers 

to such questions remains to be one of most urgent problems of the solid state physics. From the thermodynamic 

point of view, melting refers to the first-order phase transformation. Historically, to explain this process various 

theories were proposed, which are based on the Debye–Einstein oscillating model for crystalline solids. 

Theories by Lindemann and Grüneisen are the most popular among them [1]. 

According to Lindemann, at melting temperature 
mT  the relative change in the dimensionless 

amplitude of atomic oscillations reaches a critical value 
mx , at which the change in unit cell dimensional 

parameter r  is so strong that the lattice loses stability – it melts. For elemental crystals, the melting temperature 

is related with these and some other characteristics of the cryatal: 2222

mm 9/)( hkMrxkT  , where h  is the 

Planck constant, k  is the Boltzmann constant, M  is the total mass of constituent atoms in the unit cell, and   
is the Debye temperature. Hence, from the experimental melting temperatures one can estimate the critical value 

of the relative amplitude of atomic vibrations in crystals. It turns out [2] that for most of elemental crystals 

25.020.0m x . The narrowness of this interval suggests that the melting of all the elemental substances is 

expected approximately at same relative expansion. 

As for the Grüneisen approach to melting mechanism, when the crystal is expanded in volume from 

absolute zero of temperature by 6 – 8 %, atoms localization near the fixed lattice sites ceases to be stable and the 

substance melts: 08.006.0const3 m T . Here   stands for the crystal coefficient of linear expansion 

averaged over the temperature interval from absolute zero to melting point. In the Debye–Grüneisen 

approximation, the crystal stability limit can be estimated [3] by quasi-thermodynamic relation between 

volumes 
0V  and 

mV  
of a solid sample, respectively, at absolute zero and melting point: 10.1/ 0m VV . Thus, the 

crystal cannot be too overheated: its resistance to melting is limited by expansion in volume by 6 – 10 %. 

In present work, we briefly analyze different models of melting reported so far and propose a new 

prospective approach to the problem – dynamic modeling based on nanopyramidal cluster of the melting crystal. 

 

II. GEOMETRIC APPROACH – HARD SPHERES MODEL 
 Melting is condensed substance transformation from one – crystalline – state to another – liquid – state. 

Therefore, its modeling primarily requires characterizing the geometry of condensed matter’s atomic structure. 

When the gas of atoms is condensed, in the system there are formed interatomic bonds which, on the one hand, 

are strong enough to retain constant volume (at fixed temperature and pressure) and, on the other hand, weak 
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enough to be retained by atoms their individuality and then allow the unambiguous determination of the 

chemical composition. Acting together, these two factors shape the condensed matter as bound system of atoms, 

i.e., atomic structure. In view of this, here and below we use the term “atom” for all atom-like particles 

constituting crystals and liquids, which to greater or lesser extent differ in their effective parameters (radius, 

static charge, spin, etc.) from the isolated atoms of corresponding chemical elements. 

Condensed matter of given chemical composition can exist only in two fundamentally different states: 

crystalline state with an ordered atomic structure and liquid state with a disordered structure. In both cases, for 

sites in atomic structure the parameter of key importance is the coordination number or the number of nearest 

neighboring sites. For most of substances, crystallinity makes it impossible the relative macroscopic 

displacements in the system without disruption its integrity. However, there are exceptions, for example, 

amorphous solids and liquid crystals. Consequently, in general the melting point of a substance is not equivalent 

to its fluidity limit point. 

Since melting means condensed matter’s transition from more ordered (or less randomized) state to 

more randomized (or less ordered) state, crystal and liquid, respectively, are low- and high-temperature phases 

of the substance and its melting is related to an increase in the entropy of the corresponding system of atoms. 

In the ground state, each atom of the crystal performs zero-point vibrations near its equilibrium site in 

lattice. These oscillations are harmonic and, consequently, the average deviation of atoms from their equilibrium 

positions is zero. As for the standard atomic deviations, they certainly differ from zero, but almost always are 

less than the distances between nearest neighboring atoms. The only exception is helium, which crystallizes only 

under sufficiently high external pressure. 

As the temperature rises, oscillations become anharmonic. This leads to displacements of atomic 

assemblies and, accordingly, to changes in the volume occupied by the crystal. More often, the thermal 

expansion takes a place. Rarely, the crystal thermal compressing occurs as well. As directions of atomic 

oscillations are random, local variations in interatomic distances are not homogeneous. Consequently, heating 

breaks ideality of the crystalline structure. But, up to a certain temperature, its topology as a whole and, in 

particular, coordination numbers of most of atomic sites remain unchanged. Emphasize that, mathematical sense 

of the term “topology” is related to the description of a system’s structural property that changes only step-wise. 

At melting temperature 
mT  the concentration of atomic sites with broken local crystalline topology 

reach such a critical value, which is sufficient for integration of local regions with broken topologies. Thus, 

melting process can be treated as transformation of an ordered crystalline topology into a randomized topology 

characteristic of liquids. As the relation between crystalline and liquid atomic geometries is determined by the 

physical nature of interatomic binding, it is advisable to consider here, at least briefly, geometric models of 

interatomic bonds of different types that occur in condensed matter. In doing so, we have to proceed from the 

fact that the atom is bounded system of heavy and, accordingly, practically fixed nucleus and cloud of 

significantly lighter electrons that move on closed orbits around nucleus forming electron-shells. Lower – core – 

shells are completely filled by electrons and, therefore, have spherical shapes. Only upper – valence – shells can 

be filled partially and then lead to aspheric distortions of the atom shape. 

In atoms of inert elements, there are no valence shells. Therefore, in isolated state these atoms possess 

the ideal spherical shape, which practically does not change in their crystals with weak van der Waals 

polarization forces being responsible for binding. In all other types of crystals, binding is realized by valence 

electrons when atomic particles tend to states with filled valence shells, which are most stable energetically. 

For metallic atoms, the valence shells are filled with electrons only slightly – less than in half. The 

tendency to filled shells leads to the moving of valence electrons into interatomic space, i.e. collectivization of 

valence electrons between atoms constituting crystal and, accordingly, to the growth in their coordination 

number. Metallic crystals can be imagined as systems of positive ions with filled shells and, therefore, of 

spherical shape, which “float” in negatively charged electronic “jellium”. 

Ionic crystals are chemical compounds. In most stable species, total number of valence electrons in the 

unit cell is sufficient to completely fill valence shells of atoms of certain elements. Direction of valence 

electrons transfer is determined by the relative electronegativity of constituent elements. Therefore, ionic 

crystals are built of positive and negative ions with filled shells. It is clear that they are shaped as spheres of 

different radii. 

Crystals with covalent bonds are constructed from atoms of a non-metallic element and the total 

number of valence electrons in their unit cells is sufficient to completely fill valence shells only of half of atoms. 

Such a situation in combination with the absence of pronounced transition direction for valence electrons leads 

to their exchange and formation of electron-density maxima in the middle of chemical bonds between 

neighboring atoms, as well as minimization of coordination numbers. It is experimentally proved that electron-

density distribution in real covalent crystals with a good accuracy coincides with the simple superposition of 

averaged over time electron densities of isolated atoms, when they are fixed at corresponding sites of the 
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crystalline lattice. But, the time averages of electron density distributions of atoms are spherically symmetric. 

Thus, covalent crystals can be imaged as structures of partially overlapping identical spherical atoms. 

Atoms of lightest element – hydrogen – have no filled shells: after removing its valence shell, hydrogen 

atom turns into a bare proton, radius of which should be neglected in comparison with that of ion of any other 

element with filled shell(s). Hydrogen-containing crystals are featured by so-called hydrogen-like bonds. In 

these crystals, hydrogen ions can be modeled as positively charged zero-radius spheres or material points 

serving for sources of Coulomb field. 

 

     
a b c d e 

Figure 1. View of atomic geometries of crystals of (a) inert elements, (b) metals, (c) ionic compounds, (d) 

covalently bonded semiconductors, and (e) hydrogen-containing compounds with square lattice structure. 

 

We come to the conclusion that any crystal can be represented as an ordered structure of spherical 

atomic particles. In Figure 1, such geometric models are presented for hypothetical quadratic crystalline lattice. 

Interaction between atoms of inert elements means the touching of atomic spheres, in metals – their 

approximation to certain distances, in ionic compounds – touching of atomic spheres of unlike ions with 

different radii, in covalent crystals – partial overlapping of atomic spheres, and crystals with hydrogen-like 

bonds – interactions with zero-radii atomic spheres, the central field sources. Of course, in real crystals one can 

face with combinations of different types of chemical bonding and then above geometric approach should be 

modified accordingly. For example, crystal with ionic–covalent bonding can be modeled by partially 

overlapping spheres of different radii. 

With the increase in the crystal temperature and then its melting – transformation into liquid – the 

ordered crystalline atomic structure inherent to the ground state gradually randomizes, the average coordination 

number of constituent atoms increases, the number of directed bonds decreases as their directions become 

randomized as well. The joint action of all of these factors improves the applicability of the structural 

description based on substance geometric models with atoms in form of spherically symmetric objects. Thus, 

crystalline and liquid states both can be considered as systems of interacting spherical atomic particles. We 

believe that geometric approach based on well-known model of hard spheres characterizing crystalline and 

liquid structures (also morphology of powdered and porous materials) would be useful in solving the problem of 

melting as well. 

Within the frames of hard spheres model, each atom constituting condensed matter is considered as an 

absolutely hard (rigid) sphere of fixed radius. Such “atoms” form bonds only in case of direct contact. The most 

important structural parameter of any of hard spheres structure is the packing ratio or relative part of the sample 

whole volume filled with spheres, i.e., “atoms”. In particular, the model of close packed hard spheres 

satisfactorily describes the bulk and surface structures of most crystals of simple substances and a number of 

chemical compounds, as well as glasses and liquid metals. Foundations of corresponding geometric theory can 

be found, for example, in the book [4]. 

Mathematically strict upper limit of the packing ratio is: 780.0))3/1(arccos3(2Limit   . It is 

clear that for periodic structures – crystals – packing ratio should be slightly smaller and when the crystalline 

structure of hard spheres changes, its value changes discretely. It was empirically established that in crystals the 

maximum possible density of 736.0Solid   is achieved in fcc (face-centered cubic) or hcp (hexagonally close-

packed) structures. Because of the randomness of amorphous and liquid structures, the packing ratio of hard 

spheres varies continuously for them and its maximum value is lower than in crystals. For example, for a single-

component liquid, i.e. randomly distributed hard spheres of same radii, it is obtained:
 

637.0Liquid  . 

Melting of the hard spheres “crystal” has to be accompanied by a change in the packing ratio and, 

consequently, the system volume. For structures with dense packing of spheres, an expansion is expected. 

Indeed, when melting most of real crystals extends. However, among crystals with low coordination numbers of 

atomic sites and, correspondingly, low packing ratio, there are ones (e.g. ice – crystal of water), for which 

melting is accompanied by the compression. 

The volume effect of melting quantitatively is characterized by relative change in the condensed matter 

volume upon its transition from crystalline state into liquid one: 
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where 
SolidV  and 

LiquidV
 
are the volumes occupied by a substance sample, respectively, in solid and liquid states. 

In the model of solid spheres, we obtain: 
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Apparently, model of hard spheres is best suited for crystals of inert elements. Let estimate the 

volumetric effect of melting for them. Using the values of close packing coefficients 
Solid

 
and 

Liquid , 

respectively, in solid and liquid states theoretically – within the framework of hard spheres model – one obtains: 

%5.15/  VV . The experimental values [1] are: Ne (24.57) – 15.8, Ar (83.78) – 14.4, Kr (115.95) – 15.1, and 

Xe (161.36 K) – 15.1 %. Here melting temperatures are indicated in parentheses. We see that despite significant 

differences in melting temperatures, the volumetric melting effect in all crystals of inert elements is almost 

same. The average value of 15.1 % agrees rather well with the model result of 15.5 %. 

As for other substances, at first glance model of hard spheres does not lead to the good agreement with 

experiments. For example, for metals with close packed crystal structures the experimental relative melting 

effect does not exceed  6 %. Main reason of the discrepancy undoubtedly is associated with difference in the 

crystal structure of real metals and close packed hard spheres. As it has been mentioned above, in real metals 

spherical ions do not touch each other, but always are separated (or glued) by layers of electron jellium of finite 

thickness. In details, structural models of metallic melts were analyzed by one of authors in the monograph [5]. 

Hard spheres model is the simplest one among possible geometric models of the condensed matter. 

Therefore, its success reveals applicability of the geometric approach to the problem of phase transformations, 

in general. 

The characterization of low-temperature, i.e. almost perfect, crystalline structures does not make a 

problem. The problems are their description at high temperatures and during the melting process, as well as the 

structural characterization of the liquid state itself. Valuable information on the atomic structure evolution in 

condensed matter with temperature can be extracted from measurements of the system entropy. Based on the 

tabulated values of melting heat of elemental metals, we have calculated [6] their melting entropy and found out 

that, according to this parameter, metals are divided into two large groups with relatively low and relatively high 

average values, respectively,  1.7 and  2.3 cal/mol∙K. 

This result can be considered as one more argument of the geometric approach efficiency since such a 

division well coincides with the division according to their structures: the first group includes bcc (body 

centered cubic) structures (Li, Na, K, Rb, Cs, Tl, and Fe), while second – close packed fcc (Al, Co, Ni, Cu, Pd, 

Ag, Pt, and Au) and hcp (Mn, Zn, Cd, Ho, and Er) structures. Moreover, the division into these groups also 

coincides with average volume melting effects:  2.6 and  5.7 %, respectively [1]. 

Even the preliminary results [7, 8] of modeling by the system of hard spheres modified for binary 

metallic melts with different atomic volumes of components were found to be useful, for example, in calculating 

mixing volume and excess of thermodynamic functions of mixing. 

Recently, we suggested [9] similar model for granular mixtures, which frequently serve for the starting 

reagents in the synthesis of a variety of special materials. As in the absence of heterogeneous inter-granular 

contacts chemical reactions are impossible, their number largely determines the successful development of such 

processes. It was used the simplest model of a granular medium, according to which the initial charge is 

considered as a statistical aggregate of spherical particles of two different diameters. An attempt was made to 

determine the optimum fractional ratio of diameters, which for given reagents mass composition ensures 

formation of the charge structure with maximum of heterogeneous contacts. 

A generalization of such kind results by us has been formulated in form of a structural doctrine of hard 

spheres packing [5]. 

A simple model of the close packed structure of hard spheres interacting via long-range Newton-type 

attraction forces has been suggested in [10]. Based on DFT (density functional theory), the exact equation of 

state was obtained and the mutual transformations of crystal structures in such systems were explored. 

 

III. PHYSICAL AND COMPUTER MODELING 
 As early as in the pioneering work on computer simulation of the condensed systems equation of state, 

some signs of a phase transition possible in the hard spheres system were discovered. According to [11], one of 

the main results reduces to the following: at melting point crystalline and liquid phases with relative densities, 

respectively,  0.736 and  0.667 are in equilibrium. 

 Computer experiments have established that thermal disorder even in the solid phase leads to the 

appearance of pentagonal faces. However, a comparison of the statistical distribution of polyhedra in types for 
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heated solid and liquid shows that the structural units with fifth-order symmetry in the “hot crystal” appear 

sporadically, whereas for a liquid they must be dominant [12]. 

Despite the fact that today a number of physical models of the liquid state of metals and alloys are 

suggested, among them there is no generally accepted one that would fully describe the nature of the liquid 

metal. Nevertheless, these models are to some extent useful for analyzing the melting process. In particular, 

several circumstances common to all liquid metals have been singled out by generalization of the experience 

accumulated by the modeling practice: (1) Near the metal melting point, the interatomic potential energy by 

order of magnitude exceeds the kinetic energy of thermal motion of atoms; (2) There is no long-range order in 

the arrangement of atoms; and (3) The system is fluid. 

Conditionally, all the proposed models can be divided into two main groups. These are so-called quasi-

gas and so-called quasi-crystalline models. The first list includes those models, in which the consideration is 

based on the motion of atoms. As for the second class of models, they take into account atomic interactions in 

local regions. 

Sometimes, even hard spheres model becomes suitable for liquid metal. This is the most common 

model of quasi-gas type. In addition to diameter of spheres and packing ratio, its key characteristic is the pair 

interaction potential. Such modeling leads to the conclusion that for liquid metals the packing ratio should be in 

the range of 0.44 – 0.47. Further development of the model implies the introducing of rigid sticks to model the 

chemical bonds and hard disks to model the molten surface layer, as well as so-called elastic spheres and discs. 

In further generalization of the geometric approach to melting process, alternatively to rigid sticks 

directional interatomic bonds can be taken into account by introducing anisotropy of the shape of atoms – 

replacing spheres with ellipsoids. This allows the manifestation of qualitatively new effects. For example, 

crystallization – freezing of the fluid, in the sense of inverse to melting process, can be considered in the 2D 

fluid model of hard circular or elliptical discs. It is known from computer simulations that 2D fluid of hard disc-

like particles can freeze upon increasing density. According to the suggested freezing mechanism for such a 

system, the taking into account only three (out of six in total) alternating nearest neighbors of any particle is 

enough to describe both disordered and crystalline phases, as well as transition between them. The disordered 

phase becomes unstable when average center-to-center distance becomes shorter than two particles diameter. In 

[13], this mechanism was applied to understand freezing in case of elongated particles. There was found an 

intermediate range of particles anisotropy, when freezing is frustrated and monolayer proceeds continuously 

from a disordered phase to a crystalline one. 

By operational definition, the glass transition is the point at which the viscosity of a structurally 

disordered liquid reaches its universal threshold value. But, when transition is a purely dynamic phenomenon 

ergodicity gets broken – the system becomes confined to some part of its phase space – and the thermodynamic 

properties of the liquid can remain unchanged across the transition. Such a phase transition would trigger the 

dynamic standstill and then be masked by it. In [14], the Monte Carlo simulations of a 2D system of 

polydisperse hard disks far within its glassy phase was performed and found no evidence for a thermodynamic 

phase transition up to very high densities: the glass remains indistinguishable from the liquid on purely 

thermodynamic grounds. 

The model of free volume is based on the assumption that the structure of a metallic liquid is quasi-

crystalline. Only repulsions between the neighboring atoms are taken into account regardless of motions of other 

atoms of the same “unit cell”. Moreover, in this model the transfer of atoms between the “cells” is not allowed. 

The coefficient of the dynamic viscosity of a metallic liquid is expressed by the specific volume v  as )( bvc  , 

where c  and b  are constants. In particular, parameter b  is close to the sum of the intrinsic volumes of atoms. 

Consequently, the coefficient of viscosity is approximately proportional to the liquid metal free volume. 

Frenkel’s hole-model is based on the assumption that near the melting point liquid metal does not 

strongly differ from crystal by structural characteristics. As it is known, during melting metals expand by 3 – 10 

%. This excess in fluid’s volume is heterogeneously distributed – it consists of instantaneous and vanishing 

nano-voids or “holes” in different parts of the system. In order of magnitude, the radius of a nano-void is  0.1 

nm which is commensurable with the interatomic distances. According to the hole-model, the flow of a fluid 

consists in moving atoms from one position to another by overcoming energy barriers which average height 

approximately coincides with the molar heat of fusion. 

The cluster-model is closely related to the hole-model. It also is based on the assumption of similarity 

between the structures of real metallic liquids and nanocrystalline solids. The model also assumes that in liquids, 

like crystals, the ordering is distributed to larger volumes with the difference that for a crystal such state is 

stable, while for liquid – changeable. The liquid at any time breaks up into large groups of atoms: clusters, 

within which atomic ordering is retained, and adjacent nano-volumes with disordered arrangements of atoms. 

The cluster fluid model is used to study properties of complex melts under the assumption that extensive 

properties of a real system are additively determined by corresponding properties of clusters. 
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Quasi-crystalline models can be considered as development of the cluster model. In such a model, the 

melt is a unity of two thermodynamically unstable structural components. These are: hard clusters with ordered 

arrangement of atoms and disordered zone that fills the regions between randomly oriented clusters. Because of 

energy fluctuations, these two components are continuously transformed into each other, but so that the lifetime 

of the cluster exceeds the period of atomic vibrations in the solid state. 

The quasi-chemical model, being similar to cluster and quasi-crystalline models, assumes the structure 

of metallic liquid to be inhomogeneous. The application of the model is advisable for multicomponent melts, 

since in this model the differences in interaction energies of atoms of different chemical nature are taken into 

account. For this reason, at same temperature the coexistence of clusters with different composition and 

structure is permissible in the multi-component melt structure, and so is the stability. 

Summarizing this variety of physical models of liquid metals, we can conclude that they differ in their 

assumptions about the spatial arrangement of atoms. 

To develop a basis for physical model of metal melting in a geometric approach, we have analyzed the 

structures of those metal clusters that can exist in liquid state [15, 16]. 

Currently, it becomes possible to construct such mathematical models of liquid metal that allowed 

numerical simulation of their structures and properties at the atomic level. In particular, by computer simulation 

the motion of individual atoms are observed, as well as the time evolution of stability of a structure with short-

range order changes with temperature, pressure, and other external parameters. Although, due to the computer 

memory limitations in a complex model it is not possible to study large (polyatomic) systems. For this reason, 

the objects of investigation often are so-called basic cells that cover a system of atoms of a certain (usually 

simple cubic) form. Since the structural characteristics depend on the atomic interactions, the main trend in 

modeling is to study the relation between system properties and pair potentials acting between its components. 

An important special task of computer modeling of the metal melting is the compilation of an 

algorithm for generating the mostly dense disordered packing of hard spheres. Both theoretically and practically 

it is essential to establish the degree to which structures of densest unordered packing will be similar, when are 

constructed according to different algorithms. Anyway, the packing ratio will vary in a narrow range, 0.62 – 

0.66, which lies well below the value of this characteristic for the ordered structure: 0.74. 

The results of computer simulation of liquid metals confirm the existence of local spatial ordering. In 

this case, such a structure does not arise chaotically, but according to the effective interatomic potentials utilized 

in the model. 

According to the review [17] of mathematical models of liquid metals, corresponding computer 

simulation methods, and obtained on their basis results, most part of suggested in the literature methods can be 

reduced to the widely known method of MD (molecular dynamics). The specificity of MD modeling for the 

melting process is related to the following two requirements: (1) The model should contain a sufficiently large 

number of atoms, since unlike the crystalline state, the use of periodic boundary conditions is unacceptable; and 

(2) The accuracy of the used interatomic potentials should be quite high, so that they simultaneously describe 

both the solid and liquid phases. 

At present, the computer modeling results are available for many elementary metals, semimetals, and 

semiconductors, as well as a number of binary systems. However, the accuracy achieved in such modeling is not 

sufficient. Moreover, the analysis of MD simulation of amorphous metals carried out from the point of view of 

the theory of dynamical systems shows [18] that for such models structural instabilities are characteristic, 

because of which the specific structure of the amorphous metal a priori becomes unpredictable. We can state 

that the structure obtained by substance modeling in the melting process will not be single, but one from the set 

of possible structures. 

A description of physical foundations of computer modeling of structure, atomic dynamics, and the 

properties of crystalline and amorphous metals and alloys, as well as melts, can be found, for example, in the 

book [19]. In particular, MD modeling of the thermal motion of atoms using the Lenard–Jones type interaction 

potential, which numerical values are established for a liquid, is presented in the melting process. Besides, based 

on quasi-crystalline approach and calculation of radial distribution functions of atoms in metallic melts, the 

computer simulation of liquid metals structure is conducted. 

At first glance, newly captured [20] 4D atomic motion (3D movement of atoms at different times) 

contradicts older theories of how elements and alloys melt, crystallize, and evaporate. In particular, by electron 

microscope the iron–platinum alloy has been examined at  700 K. What was different was the nuclei created 

irregular shapes instead of almost round ones, which were the ones predicted as per previous long-standing 

theories. Another change was the fact that their borders became more jumbled, instead of sharp.  

In [21], to exhaust the possibilities offered by the scaled particle theory of the hard spheres fluid, an 

approximate differential equation of state with the Helmholtz free energy and also the compressibility factor as 

unknown functions of the density was derived from the basic relations inclusive the thermodynamic condition. 
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IV. MECHANICAL MODELING 
The possibility of effective mathematical modeling of the condensed matter, in particular, solid and 

liquid metals when they are considered as systems of hard spheres leads to the conclusion that valuable 

information on the nature of melting process can be obtained by its mechanical modeling as well. 

Mechanical models can be static or dynamic. In this section, we first briefly describe available results 

on the static modeling of crystalline structures of and liquid substances. But, it is clear that such simulations 

could not be sufficient for the description of melting, the process of transition from a crystalline structure to a 

disordered structure characteristic of liquid state. To this end, we will introduce a dynamic model of melting. 

What role does metals structure of play in the melting process? In general terms, the issue of the 

influence of space-structural characteristics on the stability of metals within the framework of static model of 

irregular structures was posed by us in [5, 16]. 

A number of mechanical models of molecular and crystalline structures are known. They, as a rule, 

serve for visual aids in the teaching stereochemistry. A good example of this kind is the model [22] constructed 

from spherical balls of different radii (atoms of different elements) connected by flexible cylinders (chemical 

bonds), which under external influences change their length and curvature and retain the acquired shape after 

removal of the effect. 

Metallic nanoparticles frequently are modeled [23] in a pyramidal form (Figure 2). 

 

 
Figure 2. Static model of gold nanopyramid. 

 

For granular materials, it was demonstrated [24] experimentally that at their consecutive layer-by-layer 

packing monodispersed spherical granules form almost close packed structures. 

As for simple liquid metals, Bernal constructed his well-known mechanical model in the form of 

identical balls connected by wires of different lengths [25]. This model demonstrated the fact that liquid has not 

only a single structure, but an infinite choice of mutually equivalent structures, and it constantly flows from one 

random structure to another. Bernal modeled mostly dense disordered structures of atoms using a vessel of 

irregular shape filled in with steel balls. From such a simple model it is possible to estimate the packing 

coefficient of disordered dense packing, and also to conclude that structural units with the fifth-order symmetry 

axis (frequently icosahedra) predominate. But, it is difficult to determine coordinates of centers of individual 

balls and then statistical characteristics of their spatial distribution. 

In the mechanical model of fluid suggested in [26], atoms are modeled not by steel balls, but by soap 

bubbles. Soap bubbles are lighter than air and, therefore, it becomes possible to model entirely new effects, for 

example, the action of a force pushing out of the liquid. Many earlier experiments and simulations of packings 

of monodisperse hard spheres reported a dominance of the fcc structure in the limit case, even though it has no 

significant energetic or entropic gain over other close packed configurations. Combining simulations and 

experiments, there was demonstrated that a simple mechanical instability which occurs during the packing 

process may play an important role in selecting the fcc structure over other close packed alternatives. This 

argument is supported by detailed quantitative analyses of key configurations in packings of spheres and 

highlights importance of the packing dynamics. Proposed mechanism is elementary and should, therefore, play a 

role in wider range of systems of spheres. 

Static modeling may not be sufficient even for choice of the equilibrium atomic structure of a 

condensed matter. One should expect more difficulties in modeling of processes like melting. Consequently, 

adequate mechanical model of melting necessarily must be dynamic. 

Interesting dynamic model for not spherical but cubic particles was suggested in [27]. With its help the 

compaction dynamics of an ensemble of cubic particles submitted to a novel type of excitation has been 

experimentally analyzed. Instead of the standard tapping procedure used in granular materials the alternative 

twists to the cylindrical container was applied. Under this agitation, the development of shear forces among 

different layers of cubes leads to the particles alignment. As a result, the packing fraction grows monotonically 

with the number of twists. If the excitations intensity is sufficiently large, an ordered final state is reached where 

the volume fraction is the densest possible compatible with the boundary condition. This ordered final state 

resembles the tetratic or cubatic phases observed in colloids. 
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In the present paper, an attempt is made to find out how fcc lattices react to the expansion when and 

how the regular structure transforms into an irregular lattice and which geometric and topological factors 

determine the melting transition. In order to answer these questions, one must first of all investigate the 

mechanical stability of the structure itself as a 3D geometric object. 

 

  
a b 

Figure 3. Device for determining of structure stability: (a) schematic drawing and (b) photo. 

 

In order to determine the mechanical stability of fcc structures, we constructed special device – 

dynamic model (Figure 3), in which along the guide channels (2) oriented by angle of 120 ° relative to each 

other, rectangular plates (3) are at radial moving by rigid guides with pins (4). In the rotational ring (5), oblique 

cuts (6) are made for the pins (4). When the ring (5) rotates relative to the stationary centered ring (7), the 

oblique cuts (6) move plates (3) in radial directions. Consequently, it is possible to vary the size of barrier (8) in 

form of regular triangle shaped by plates (3) ends. The radial movement of plate (3) is measured by dial gauge 

(9) with accuracy of 0.01 mm. The smooth rotation of ring (5) and, consequently, radial movement of plates (3) 

are achieved by the micro-screw (10), which is connected to the rocker arm (12) by the gimbal joint (11). 

With the help of this device, the stability limit of a trihedral pyramid constructed from identical steel 

(bearing) balls has been determined experimentally. At close packing of balls in such a structure, each ball 

comes into contact with six similar ones in the horizontal plane and three balls in each of two adjacent (upper 

and lower) layers. Thus, the fcc structure packed in the crystallographic plane (111) is obtained (Figure 4a). 

Similar colonies of balls – pyramidal clusters – contains N  balls. Number of balls determined by so-called 

tetrahedral numbers of Pascal’s triangle: 

,84,56,35,20,10,4,1
6

)2()1(





nnn
N ,      (3) 

,7,6,5,4,3,2,1n ,         (4) 

where n  is the number of layers in the pyramid. The basal layer contains 2/)1( nn  balls. Stability of the 

pyramid in the gravity field is supported by the triangular barrier (8) formed by ends of plates (3). 

 

   
a b c 

Figure 4. Pyramidal cluster of hard balls: (a) initial ordered state, (b) state of geometric disorder while 

preserving of initial topology, and (c) beginning of initial topology destruction. 

 

 When the ring (5) rotates (clockwise – in our case), the pyramid base dimensions increase, balls deviate 

from corresponding regular lattice sites stochastically, and the system of balls becomes geometrically 
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disordered. Although at the beginning it retains pyramidal shape, i.e., initial topology (Figure 4b). After 

increasing in size of the pyramid base side to a certain critical value, the structure loses its stability in the gravity 

field, collapses and goes into an unordered state, in other words, a topological transformation takes place in the 

system of balls (Figure 4c). 

Obviously, stability limit of the structure for given N  and identical processing (polishing) of ball 

surfaces, as well as device body, i.e., at fixed coefficients of friction should not depend on the balls diameter d . 

At 1N , the “pyramid” consists of a single ball. 

The smallest pyramid with a structure is formed when 4N . It is a tetrahedron formed by four balls, 

which “collapses” when three basal balls are displaced from each other at distances of d3  allowing fourth to 

be placed in the created cavity. As a result, the 3D structure becomes the 2D one. 

In contrast to these trivial cases, when 4N  determining of the stability limit of a pyramidal structure 

is devoid of such clarity. However, this problem can be experimentally studied using the constructed device. 

Our goal is to establish the stability of fcc structures in thermodynamic limit by extrapolating the 

stability limit of pyramidal colonies consisting of finite numbers of ball to the case of their infinite number in 

the pyramid: N . 

The experiment conducted with the help of this mechanical model consists in measuring the coefficient 

of linear expansion of sides of the built of balls pyramid base: 

0

0

l

ll 
 ,          (5) 

where 
0l  

is the initial length of these sides and l  is their length at moment of losing the structural stability. 

However, the final interest is the relative coefficient of volumetric expansion 

0

0

V

VV 
 .          (6) 

Here 
0V  is the initial volume of the pyramid, and  V  is its volume at the moment when it loses stability. 

So, we need to establish the relation between coefficients   and  . Note that 
0V  is calculated as the volume of 

a regular trihedral pyramid, i.e. tetrahedron: 

000
3

1
HSV  ,          (7) 

where 

2

00
4

3
lS            (8) 

is the area of its base, and 

00
3

2
lH            (9) 

is its height. Finally, we get:

 

26

3

0
0

l
V  .          (10) 

Assuming that tetrahedron edges pass through the centers of edge balls, their length can determined by balls 

diameter and pyramid size, i.e., number n : 

dnl )1(0  .          (11) 

It leads to the pyramid initial volume in the following form: 

26

)1( 33

0

dn
V


 .          (12) 

 Up to its destruction, topology of the balls structure does not change – system retains the pyramidal 

shape. Therefore, we can assume that initial regular tetrahedron, when one of its faces (base of pyramid) is 

expanded, transforms into an equilateral pyramid. Its volume at the moment of destruction is calculated by the 

standard formula: 

SHV
3

1
 ,          (13) 

where S  is the area of  pyramid base and H  is its height. The area of the base is 

2

4

3
lS  .          (14) 
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As for the height, when calculating it one has to note that up to destruction all the balls placed along lateral 

edges of the pyramid keep contacts with neighboring balls and, consequently, original length of these edges also 

remains the same: 
0l . We have: 

02

0

2

3
1 l

l

l
H  .          (15) 

In this way, we obtain: 

2

0

2

2

0

2

0
22

3

l

l

l

l
VV  .         (16) 

The ratio 
0/ ll

 
of base edge lengths after and before structure failure, introduced here, is determined 

experimentally – from the measured relative expansion coefficient of the model: 

1
0l

l .          (17) 

It gives 

2
1)1(

2
2

0


 VV          (18) 

and 

1
2

1)1(
2

2 


 .        (19) 

Bearing in mind that up to the pyramid destruction the relative linear expansion of edges of its base remains 

small, 1 , we get 

2

3
  .           (20) 

 The obtained result significantly differs from the well-known relation,  3 , which follows for a 

cube that is uniformly expanding in three directions. This is due to the fact that expansion of the horizontal base 

taking place in the gravity field is accompanied by pyramid compression in the vertical direction. The 

corresponding decrease in height is substantial and partially compensates the base area expanding effect. As 

result, coefficient of volumetric expansion reduces. 

 Physical justification of the suggested dynamic model is as follows. 

Balls of all the overlying layers (by their weight) act on the balls of a given layer. In turn, the balls of a 

given layer by elastic forces of reaction act on balls of the upper neighboring layer. Hence, the magnitudes of 

forces of pair interaction between balls of adjacent layers depend on the height. They increase in the direction 

from the top of the pyramid to its base. Due to the finite size of layers – presence of boundaries, distribution of 

interaction forces in the horizontal directions are heterogeneous as well. This discrepancy between the model 

interactions and the real interatomic ones should not play an important role since the balls are almost rigid and 

inhomogeneous distribution of interaction forces does not affect their homogeneity by radii. 

 Modeled distribution of binding forces in some extent is similar to that in real close packed metallic 

structures. It was found [28] that hybrid bonds and exchange interaction can significantly affect the ratio ac /  of 

crystal lattice periods a  and c  in hcp metals. Heterogeneity of the electron charge density distribution in such 

metals is indicated by smallness of structural factors experimentally measured at small scattering angles, as well 

as combination of major and minor components of the elasticity constant. As a result of this, during crystal 

compression along the c -axis, there is practically no mechanism for the transfer of stresses in directions lying in 

the basal plane, and vice versa. 

 The stability of the pyramid in the Earth gravity field is provided by the barrier in form of a regular 

triangle, which limits horizontal displacements of pyramid basal balls. Summarizing, we can say that atomic 

interactions are modeled by balls weight and reaction elastic forces of balls together with interaction of balls 

with triangular barrier and horizontal surface at pyramid basal plane. 

 Increase in the system temperature is modeled by the simultaneous action of two factors – uniform 

expansion of the pyramid base and friction between contacting balls (as well as balls of the pyramid base on the 

horizontal surface). Just friction leads to the randomization of distances between centers of balls. 

The stability limit of such a structure for a given number of identical balls should not depend on balls 

diameter or average coefficient of friction between them. 
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V. PRELIMINARY RESULTS OF DYNAMIC MODELING 
Results of the preliminary experiments carried out with the help of our model are shown in Table 1 and 

Figure 5. Here, the limit linear expansion coefficient is plotted along the ordinate axis. 

 It follows from Figure 5 that the structure stability decreases monotonously with increasing in N . 

Obviously, this curve asymptotically tends to some non-zero limit, the exact estimate of which, if necessary, for 

a far extrapolation (by an infinite number of balls: N ) may be associated with ambiguous errors. The 

largest tested by us pyramid contained 364 balls, which corresponded to a stability limit of about 5.8 % or 8.7 % 

for volumetric expansion. In order of magnitude this value is quite reasonable. A more detailed quantitative 

comparison with data on the melting of metals requires pursuing of multiple measurements and statistical 

treatment of obtaned results. 

 

Table 1. Limit coefficient of linear expansion of nanopyramid as function of number of hard balls in model.  
Number of hard 

balls in model 

pyramid N  

Limit coefficient 

of linear 

expansion  , % 

1 100 

4 74 

10 34 

20 29 

35 24 

56 18 

84 13 

120 12 

165 8.0 

220 7.7 

286 6.3 

364 5.8 

 

 
Figure 5. Dependence of limit coefficient of linear expansion of pyramidal structure on number of balls. 

 

 One thing can be said with certainty: if thousands of balls are contained, they will be sufficient to 

obtain reliable results. But for a real system, thousands of atoms correspond to the nanoscale substance. In this 

way, a nanopyramidal cluster can reflect bulk metal properties at melting point. 

 Thus, we believe that the limit of expansion of metals in solid phase and the limit of mechanical 

stability of model pyramid of balls with a similar structure should be comparable. Although reasons for their 

stability are of different physical natures: in first case the stability is due to atomic interactions, and in second 

case equilibrium of mechanical system of absolutely hard balls in homogeneous external (gravity) field under 

conditions of acting frictional forces between balls and fixed dimensions of the system in basal plane 

perpendicular to the field. 

 

VI. Discussion 
 In this section, we discuss the details of physical foundation of “mechanical” melting process 

considered as a transition in hard spheres system from ordered – close packed fcc – structure of to a disordered – 

close-packed one. 

 We have to start with description of fcc close packing. In this case, each ball is in contact with twelve 

identical balls. If center of an arbitrarily selected coordination sphere connect with centers of nearest spheres, 
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we obtain a figure with fourteen facets in the form of cube-octahedron having twelve vertices and twenty four 

edges (Figure 6a). As it is known, in an ideal lattice one always can choose unit cell with its full symmetry. 

Such a cell, for example, is the Wigner–Seitz cell. Obviously, for fcc structures the Wigner–Seitz cell has a form 

of rhombo-dodecahedron (Figure 6b). 

 

  
a b 

Figure 6. (a) Cube-octahedron – environment in fcc lattice and (b) rhomb-dodecahedron – Wigner–Seitz cell. 

 

As for a random close packed system of balls, in which the lattice periodicity is completely broken and 

replaced by an irregular system of structure sites, above construction yields an ensemble of irregular Voronoi 

polyhedra. The study of polyhedra characteristic of monofractional irregular structures showed that the 

predominant part of their faces is represented by irregular pentagons. Of course, these polyhedra are not regular 

because in this case they cannot fill the space without overlaps. However, for small distortions and the presence 

of faces other than pentagons space is filled. 

Thus, the disorder caused by the expansion has to lead to the appearance of pentagonal faces and 

destruction of the pyramid. However, reveling of fifth-order symmetry elements in this mechanical equivalent of 

the “hot crystal” will be episodic. In the irregular structure, the spatial distribution of particles is similar to the 

icosahedral configuration and characterized by the fifth order symmetry as well. Since icosahedron (Figure 7a) 

is conjugate to dodecahedron, it is obvious that for icosahedral structure Voronoi polyhedron will be 

dodecahedron (Figure 7b). Irregular packing cannot be described by lattice-type units, but can be considered as 

a set of well-defined cells – Voronoi polyhedra. They are irregular, not identical, and do not possess the lattice 

symmetry. 

 

  
a b 

Figure 7. (a) Icosahedron and (b) its conjugate figure – dodecahedron. 

 

Icosahedral clusters are expected in the amorphous state as well. By MD modeling, a mechanism of 

isothermal annealing has been established, in which formation of icosahedral structures occurs in nanoparticles 

of pure metals Al, Ni, and Cu [29]. 

According to the cluster-model of liquid, its structural units are crystal-like clusters that perform 

Brownian rotational motion and single atoms that fill the pores between them. On the basis of this theory, an 

expression for the material viscosity was proposed and metal clusters radii were estimated from corresponding 

expression and available experimental data: Cs – 5.18, K – 5.81, Li – 4.63, and Na – 5.18 Å [30]. Of course, 

these values are only indicative as correspond to different temperatures and pressures. Nevertheless, it is clear 

that these clusters contain tens of atoms, not more. Therefore, a model of thousands of atoms should be useful. 

On other hand, it is shown that a nanocrystalline phase may appear in melt near the melting curve, stability of 

which is provided by the nanoclusters rotation [31]. Upon cooling this phase can cause formation of an 

amorphous phase. 

What does the phase transition mean from a geometric point of view? In the model under the 

consideration, melting is regarded as a jump-like change in topology. According to Bernal principle [25, 32], 

regular (crystalline) and irregular (random) packings are two alternative ways of filling the space with identical 

spherical particles. Topologies of an arrangement of balls in regular lattice and irregular structure are radically 

different. To emphasize importance of the topology, note that recently (in 2016) the Nobel Prize in Physics was 

awarded just for theoretical discovery of topological phases of matter and topological phase transitions [33]. 
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At critical disturbance of the ordered structure, it loses stability and “melts”. In terms of the model 

proposed, at this moment a topological jump takes place: the Wigner–Seitz cells are transformed into Voronoi 

polyhedra. “Geometric melting” occurs when topological characteristics of the structure change. In case of 

melting of fcc lattice of balls, the nearest environment of any ball in the form of cube-octahedron transforms 

into icosahedral configuration. 

For our model, the volume of a cluster in form of a hard balls union, as well as other integral properties 

(such as the boundary area), play critical role. Analogous problems are too important for some other fields as 

well. In [34], there were proposed algorithms to compute volumes of unions of atoms (bounded by van der 

Waals forces) just from the Voronoi diagram of the system. These algorithms were implemented and thoroughly 

tested for big protein molecular structures. 

Seemingly, the regular trihedral pyramid – tetrahedron is main structural motif not only of crystals, but 

also amorphous matter and liquids. It was demonstrated [35] the possibility of independent approaches to the 

construction of a dense quasicrystalline packing of regular tetrahedra in icosahedral symmetry. The resulting 

“icosahedral” quasicrystal has a packing density of 59.783 %. These geometrical considerations have 

experimental confirmations as well. The plasmonic single-crystalline seeds were used to track the growth of 

multiply twinned silver nanostructures [36]. They successively developed twin planes to form multiply twinned 

nanoparticles from seeds. Together these data demonstrated how a series of nanoparticles of different shapes 

and internal crystal structures are interrelated and developing from one another. Even growth starts from an 

almost spherical particle, it by obligatory takes intermediate form of tetrahedron and, finally, icosahedron. It was 

demonstrated [37] that by using the solution-phase method highly symmetric golden nanostars can be obtained 

from the icosahedral seed: the evenly distributed pyramidal arms are enclosed by the icosahedron facets. 

In light of the well-known historical discussion between Frenkel and Landau on the atomic mechanism 

of transition from long-range order to near-range one and based on modern experimental data on metallic 

materials nanostructuring by means of superplastic or intense megaplastic deformations, there was found one 

more argument for our model assumption that melting begins at the multiplication of defects in local areas of the 

structure. Namely, physical aspects of structural phase changes in nonequilibrium grain boundaries were 

described [38] and found out that it is possible to change periodically the grain boundaries state in Zn–Al and 

other metallic alloys from the equilibrium state with negligible density of lattice dislocations to the first limiting 

– nonequilibrium crystalline state with their extremely high density and energy close to the melting energy of 

the material, subsequently to the second limiting – liquid state and then return to the initial state. Such a model 

corresponds simultaneously to provisions of Landau’s theory about impossibility of a continuous transition from 

the long-range to short-range order in the crystal, and the Frenkel’s theory of crystal amorphization or melting at 

low temperature by introducing critical number of lattice defects. Thus, during and after plastic deformations 

amorphous and liquid phases can exist within micro- and nanoregions in metals. 

At first glance, the modeling of a macroscopic sample by a nano-sized cluster can be considered as 

problematic if take into account that melting temperature depends on the particle size. Analysis based on the 

chemical bonds weakening mechanism of melting leads to the conclusion that melting temperature decreases 

with decreasing nanonoparticle in size [39]. The statistical theory of the nanocrystalline state also leads to the 

conclusion that as the crystal size decreases, the pressure of the phonon gas directed outward increases and 

properties of the crystal, including its melting point, change [40]. However, it must be kept in mind that these 

and other possible nanoscale effects influencing melting point of real samples completely absent in the model. 

According to the localization criterion for the crystal–liquid phase transition suggested in [41], melting 

starts at temperature T  when the ratio kTE /d
 reaches the boundary value 

md /(S) kTE , above which solid phase 

and below which liquid phase are located in the phase diagram. Here, 
dE  and (S)dE  are energies of 

delocalization of an atom, respectively, at T  and melting point 
mT  for solid phase. This localization criterion is 

applicable for both normally melting substances and substances melting with a decrease in the volume. Besides, 

it explains the inequality 
mc TT  , where 

cT  is the crystallization temperature. Greatest value of ratio 
mc /TT  and 

small value of Grüneisen parameter are likely to be characteristic of bcc crystals. Later, it was demonstrated [42] 

that localization criterion for the crystal–liquid phase transition introduced for macrostructures is valid for 

nanocrystals as well. Investigation of variation of activation processes (formation of vacancies and self-

diffusion) parameters with a decrease in the nanocrystal size shows that at low temperatures nanocrystalline 

lattices are more perfect than that of macrocrystals, while at high temperatures nanocrystals are activated by 

mobile vacancies to a greater extent. 

Melting of crystalline surfaces needs a special consideration. 

An equation for the surface energy   as a function of sample size and shape was obtained [43] for 

nanocrystal in form of parallelepiped with square base with the ratio f  between side and base edge lengths 

determining the system shape. The   value decreases as the number N  of atoms in the nanocrystal decreases, 
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and the larger is the difference between the shape parameter f  and 1, the stronger is the )(N  dependence. At 

high temperatures, the surface Helmholtz energy decreased as the temperature increased, and the smaller is the 

size of the nanocrystal of given shape or the stronger is deviation of nanocrystal shape at given N  from 

thermodynamically stablest cubic shape, the larger is the T /  value. Nanocrystals were shown to melt, 

when their surface energy is decreased to a certain value independent of their size and shape. From the 

assumption that pressure exerted on nanocrystal surface under melting passes into the Laplace surface pressure, 

an expression for relative volume, within which the solid phase of the nanosystem remains stable at different 

pressures, can be derived [44]. Such a “surface” criterion of melting slightly depends on crystal size and external 

pressure, and is solely determined by interatomic potential parameters. Calculations for macrocrystals (with van 

der Waals bonding) demonstrate good agreement with experimental data for the relative crystal volume at 

melting point. By proposing a simple quasi-chemical approximation for the square lattice fluid model with 

blocked sites (obstacles) and attractive or repulsive nearest neighbor interactions, expressions for chemical 

potential, thermodynamic factor, and distribution functions were obtained [45]. Generalizing this method on 

lattice systems, in which order–disorder phase transitions can occur, and applying the Monte Carlo simulation it 

was shown that the critical temperature linearly increases with the concentration of blocked sites. 

Some features of melting process are characteristic for nanocrystals. 

An analysis of results of studying the size dependence of vacancy concentration in nanoparticles 

presented in [46] demonstrates that an increase in the vacancy concentration with decreasing nanoparticle size is 

the most argued conclusion with assumption for relationship between melting temperature, binding energy, and 

energy of vacancy formation. Expressions for the melting point, crystallization temperature, entropy change per 

atom, latent heat, and volume change for the solid–liquid phase transition were derived [47] from model of a 

nanocrystal in the form of parallelepiped with variable surface shape. These quantities were studied as functions 

of number of atoms N  and nanoparticle shape. In particular, calculations carried out based on these relations 

show good agreement with the results of computational experiments for copper nanoparticles. It was shown that 

entropy change, latent heat, and volume change vanish in a certain range of cluster dimension 
0N  and a 

hysteresis between melting point and crystallization temperature disappears: )()( 0m0c NTNT  . In such a cluster, 

the phases become physically identical. For nanocopper, this dimension falls into the range 309490 N  and 

grows when the shape of the nanoparticle deviates from the energetically most favorable one. Using 

dependences of melting and crystallization points on the number of atoms in a spherical silicon crystal 

calculated by MD method, it was estimated [48]: (1) Number of atoms at which the latent heat of the solid–

liquid phase transition disappears, and (2) Temperature below which solidifying nanoclusters remain 

noncrystalline. These values were found to be 230 N  and 4000 T  K, respectively. The N -dependences for 

silicon melting parameters, namely, jump of entropy of melting, latent melting heat, slope of the melting line, 

and jumps in surface energy and volume, were derived as well. Size dependence of the melting point of Si 

nanoparticles also was investigated [49] using MD and thermodynamic simulation based on the Thomson’s 

formula. The atomistic modeling data obtained using the Stillinger–Weber potential agreeing well with reported 

results and thermodynamic-simulation data predict a decrease in the melting point with an increase in particles 

reciprocal radius R/1  according to linear law. The available experimental data predict lower 
mT  values, 

including the limiting value )(m T , which corresponds to the linear extrapolation of experimental points to the 

radius R . The underestimation was 200 – 300 K as compared with the reference melting point of silicon: 

1688 K. It is concluded that the MD data on )/1(m RT  dependence obtained using the Stillinger–Weber potential 

are more adequate than the available experimental data. 

Above discussion on current analysis of the melting process physics argues applicability of our 

dynamical modeling with pyramidal nanoparticles of close packed elemental metals. 

 

VII. Conclusion 
 In summary, we have argued, developed, and tested a novel dynamic model useful for studying phase 

transformations in condensed matter. For model serves a pyramid constructed from close packed identical hard 

balls with variable basal area. Preliminary modeling carried out by this device show that elemental metals have 

to melt at temperature when their volumetric expansion achieves  8.7 %. This value well coincides with both 

experimental and theoretical ones reported previously. 
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