
International Journal of Engineering Science Invention (IJESI) 

ISSN (Online): 2319-6734, ISSN (Print): 2319-6726 

www.ijesi.org ||Volume 9 Issue 1 Series. II || Jan.2020 || PP 11-17 

 

www.ijesi.org                                                                                                                              11 | Page 

Efficient Distributed Flight Path Construction Techniques In Uav 
  

Minakshi Gautam
1,
 Dr V.Ramesh

2
 

1
 (Dept. of Computer Science and Engg./Presidency university,Bangalore,India) 

2
 (Dept. of Computer Science and Engg,/Presidency university,Bangalore,India) 

Corresponding Author: Minakshi Gautam 

 

Abstract-The pioneering area of intelligent unmanned aerial vehicle(UAV) has shown significant 

developments  in recent  years particularly drones .Nowadays Unmanned Aerial Vehicles (UAVs) are more 

reliable, flight autonomous and easier to use with great prospective for commercial use  in the near future. The 

increased availability of distributed spatial data has led to a surge in their popularity. Flight automation of 

drones is considered in order to maximize their operational value and reduce cost .Different drones suffer from 

different limitations making it more difficult to plan effective autonomous flights. The paper provides  an in 

depth study of the different flight planning techniques considering different drone types researched so far and 

their efficiency analysis in distributed environment. 
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I. Introduction 
Drones are increasingly being used to perform crucial and  difficult aerial tasks economically and 

safely. To make sure operating costs are low and drone flight autonomously, their flight plans are required to be 

pre-built. In the most earliest techniques drone flight paths are not automatically pre-calculated based on drone 

capabilities and terrain information. Some of the basic techniques used were sensors[1],dynamic shortest 

paths[2], manually determined paths[3], navigation through camera images[4], and GPS for guidance[5] and  

vision based algorithms to direct the drone during flight[6], all of which makes flight navigation intricate and 

hard. Automated flights in several distinct environment has been attempted[7], and  automation of flights in 

environments including those utilizing images in indoor contained environments and the mixture of sonar and 

image[8]. 

Pre-planning the paths is another way wherein flights can fly autonomously .Some popular researched 

algorithms include Genetic algorithms to trace flight paths[9], and the use of ant colony algorithms for 3D[10]. 

UAV path planning by implementing Particle Swarm Optimization have been discussed in many papers[11].  

 But in the current scenario the enlarged availability of spatial data distributed approaches has led to a pitch in 

pre calculation of flight paths which are prefed in the drones to flight autonomously. Flight plans are prebuild  

using spatial data deliberately stored on cloud , along with accelerated processing with hadoop MapReduce[12]. 

Spatial Hadoop or Hadoop extension for spatial operations have both been explored.Hadoop based platforms 

that support distributed queries with Map Reduce have been developed[13]. 

However here we will be concentrating mainly on the techniques used in  distributed environments for 

flight path construction considering different types of drone and distributed spatial data.The two major 

approaches under study are DIFPL[14] and DIMPL[15]which are the earliest implemented complete distributed 

solution for constructing flight plans using spatial data in distributed environment. DIFPL(Distributed flight 

path builder) was developed with a view to build flight path for a mixed fleet that included conventional drone 

as well as quadcopter for surveying a large field to detect vegetation overgrowth over electic poles for an 

aviation company.DIMPL(Distributed in memory drone flight path builder) an advanced version of DIFPL was 

then developed which optimized the process by querying the data in memory. 

 

II. Distributed System DIFPL 
The complexity of covering an area with automated flights increases when there are multiple types of 

drones available with different capabilities. For this work drones two types of drones were considered shown in 

Figure 1 
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Conventional drone with limited take off and landing and Quadcopter with vertical take off and landing. 

Building a flight plan having different types of drone with maximum optimality was the primary challenge in 

covering the entire full region. Each drone type has its specific limitations. The cost of operating different types 

of drones is also varied. Not only should it cover the entire region with numerous flights of the right drone type 

that can navigate altering terrain but also use the cheaper drone as frequently as possible to minimize cost.  

For implementation the terrain data such as networking line length and elevation based climbing angle to 

optimally divide area into subregions and build the flight plan for each subregion was considered.It construct a 

set of Flight Plans in order to cover the entire power lines network of aviation organization and reduce the 

number of drone flights and overall cost. This is achieved by optimizing coverage by each flight in a subregion 

and assigning to the type of drone needed for that subregion. Network lines and elevation of waypoints in each 

subregion need to satisfy rules that are represented as autonomy and climbing angle constraints. The constraints 

decide if the subregion needs to be shrunk or expanded or split between multiple drone types. 

After collecting pictures following the mixed fleet image analysis during post-processing determines if 

the vegetation has overgrown over poles and needs trimming. Every pole in network was photographed at least 

4 times. The drone take 2 passes from each side of the lines, one pass in one direction and another pass in the 

other direction. Drone is equipped with a advanced 24 Mega pixel camera with 50 mm optical lens. The images 

are used to perform 3D image reconstruction of each pole to determine if vegetation has overgrown around the 

pole. 

 

2.1Methodology 

The degree of terrain and network lines data for large areas increases rapidly. In order to scale to the wide 

terrain and networks datasets, DIFPL employ distributed paradigm on Hadoop MapReduce framework. We can 

discuss the implementation in three broad categories: 

 

1)Preliminaries- In this section we describe the background information to DIFPL including input and output 

data, constraints on the hardware and subregion and waypoint construction.  

 

a) Input Data-The following data were used as input 

            i) (x,y) geocoordinate position of network lines endpoints provided by aviation         

                organization . 

           ii) elevation data (x,y,elevation) provided by geographic agency. The elevation points      

                are 25m apart. 

  

b) Output Data-  

           i) A set of flight plans, each composed of a set of waypoints (x,y,altitude) . 

          ii) One landing point in KML format for the drone. A separate output   

              file is written for each subregion. 

  

    A pictorial representation of the sample area is given in fig 2. 
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Fig2. 

2)Constraints- The constraints on the flight path of drones were designed as inequalities. The inequalities were 

applied for each subregion for the type of drones. The inequalities were modelled as:  

 

For climbing angle:  

    Max(Clp) ≤ Ctype 

 

 Which described that elevation angle drone has to climb to fly from one waypoint to next   

 along network line should be less than Ctype which is the climbing angle of the drone 

 

For autonomy:  

    ∑ L (2 ∗ dL +iL) +3 ∗ l ∗ 2 ∗ π ∗ r +t +n ≤ Atype  

    d is the distance of each network line 

    t is the takeoff distance to get to required elevation over first network pole with the   

    climbing angle of each drone type 

    n is the landing distance with the descent angle for drone type 

    i distance between two network lines  

    r is the turn distance for the drone type for L lines.  

 

Turning radius of conventional drone is 150m while that of quadcopter is 0m. The distance i is calculated by 

ordering network lines in the subregion by their start and calculating the distance between one line to next. Since 

there are 3 turns for a drone to cover a line segment twice and proceed to the next line segment 3 turning 

circumferences have to be added to the equation. The requirement of photographing each pole 4 times is 

satisfied by setting camera to take an image a second. The number of waypoints in output is achieved by 

collecting waypoints along network lines every 200m for conventional drone and every 100m for quadcopter 

and increasing it if the number of waypoints exceed the maximum. 

 

3) Number of Waypoints. The hardware of conventional drone can be programmed with up to 200 waypoints 

and the quadcopter can be programmed with 50 waypoints 

 

2.2Architecture 

The architecture of DIFPL is based on distributed paradigm. The distribution approach in DIFPL was 

implemented using Apache Hadoop MapReduce framework.  Hadoop is an open source framework which 

facilitates distributed computations on large clusters. A master node supervises data storage and computation 

distribution over multiple slave nodes. Files are uploaded into distributed file storage called HDFS, split into 

64MB blocks and then processed.All the nodes are tracked by master node by keeping storage information of 
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the blocks. MapReduce allows master node to break down huge computation tasks into mappers and reducers 

distributed over slave nodes. Mappers read input data as key value pairs and show intermediate key value pairs . 

Reducer receive the intermediate key value pairs grouped by k value and processes them to generate the final set 

of key value pairs . The distribution of flight path builder is important due to memory limitations of indexing 

large elevation and network datasets on a single node. Several opportunities for distribution of the flight plan 

builder process are available. The identification of quadcopter subregions and the shrinking of quadcopter and 

conventional drone subregions can be performed in parallel. The distributed application runs on a cluster on 

Amazon Web Services (AWS). MapReduce jobs are run on AWS as Elastic MapReduce (EMR) and data is read 

from and written to S3 buckets similar to HDFS. Hadoop 2.5.1 and MapReduce2 were considered for this 

execuiton. The experiments were performed on a 5 node Hadoop cluster with 1 master and 4 slave nodes. An 

overview of the distributed system architecture is shown in Figure 3. 

 

 
 

The flight plan building is implemented in 3 steps. The input data is stored in a distributed file system 

HDFS. The input data in converted into key value pair <k,v> where key is an index and v are geometric 

coordinates values of the network line and elevation data .The idea is to combine similar data under one key 

removing redundant appearance of the data and distribute them over n nodes to execute parallallly.The three 

phases that transform the data are as follows: 

 

 
1. Map  reads the input as key-value pairs < k1, v1 > and transforms them 

to key-value pairs < k2, v2 >  

2. Shuffle The key-value pairs < k2, v2 > are distributed across all machines.  

This stage guarantees to sort the  keys and key value are combined together for reduce stage. 

3. Reduce It group the values together as < k2,< v2, v′2, v′′2 , . . . >> and emitanother set of  key-value pairs < 

k3, v3 > to be processed in the next job. 

 

2.3 Construction of flight plan  
A simple pseudocode how a flight plan is constructed 

 

Step1 :Take input network and elevation data from the disk. 
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Step 2:Checks for spatial index 

 

Step3: if present(spatial index(network data)) 

Load index from the memory 

else create spatial index(netwok data) & write to disk 

 

Step4: Construct waypoints with elevation network points      

using KNN algorithm. 

 

Step5: if CC and AC are satisfied for conventional drone 

execute query in CD 

else  shrink or expand the region & 

again Construct the waypoint  

if CC and AC are satisfied for QC 

execute query in QC 

else  take new points go to step4. 

 

Step6: Output  the flight plan. 

 

Explanation:  

The software reads index file from disk if present otherwise reads the network line and elevation data 

{network i} and {elevation i} and assign them spatial index Si. The algorithm then starts searching index with 

conventional drone Dc sized subregions .Obtained result is set of the query that include network lines and 

elevation points inside the subregion. It calculates waypoints along network lines in query and then elevation of 

waypoints using kNN query and taking average of  the elevation of nearest neighbors. If the network lines suit 

the conventional drone autonomy constraint Ac and does not satisfy the conventional drone climbing angle 

constraint Cc, then it searches spatial index for the subregion using default size of quadcopter Dq . Each 

consecutive quadcopter size subregion that simply satisfies the climbing angle constraint is merged with 

previous one.  Regions that do not satisfy Cc  require quadcopter. If the total length of network lines are 

extremely large or less than β% threshold of the autonomy of quadcopter or conventional drone, then the 

subregion is shrunk or expanded recursively till it  completely satisfies the  constraint of autonomy for the 

respective drone type.The output for each subregion as waypoints and landing point is written. 

 

III. Distributed Sytem DIMPL 
Since the amount of data is huge writing immediate output to the disk  became a costly affair in 

DIFPL.This led to the formulation of DIMPL that constructed flight path using an in-memory technique . The 

in-memory distribution implementation, unlike the DIFPL implementation, does not need to write the 

intermediate output to disk, it performs all operations in-memory. For that purpose Apache Spark an in-memory 

based framework was considered that allows computations to be distributed in-memory over a large number of 

nodes in a cluster. 

                                           

3.1 Methodology 

Since the algorithm is a successor of DIFPL the data consideration and climbing and autonomy constraint 

remain same for DIMPL as well. We will directly focus on the in-memory approach that optimized DIFPL. 

 

3.2Architecture 

The programming construct in Spark retransform the data on a disk into RDDs (resilient distributed datasets) 

and then deploy further actions to the RDDs on subsets of data in processes called executors on cluster nodes to 

produce values that can be returned to next level processing. RDDs are highly fault tolerant in case one or more 

nodes of the cluster fail. The algorithms provided by Spark are ML and statistical functions that are highly 

iterative in nature. Performing complex distributed operation on a  disk based distribution framework such as 

MapReduce is quiet expensive computationally due to the need to write data to the disk during each iteration. 

The in-memorapplication runs as a cluster on AWS. Spark jobs are run on AWS and data is read from and 

written to S3 buckets which is similar to HDFS[16]. As the figure shows, the various in-memory RDD 

transforms that are performed allow the construction of flight plans by subregion-wise distributions. A Spark 

jobs driver controls the sequence of RDD transformations and actions.For each data RDD is prepared which is 

then converted into a pair RDD which is then  processed parallely. 
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IV. Basic Performance Analysis 
The performance diagram shown below clearly states that the query execution time in DIMPL is less 

than in DIFPL .Also for sequential execution time consumption is more than when the query was executed on 

different nodes.However the performance remain constant even if try to increase the amount of nodes in the 

cluster. 

 

4.1 Performance Graph 

 
 

4.2 Comparision table DIFPL VS DIMPL 
DIFPL DIMPL 

Runs on AWS and uses hadoop map reduce framework for 

preparing flight plans. 

Runs on Amazon spark utilizing RDDs framework . 

Disk based implementation In-memory Query execution 
 

Considers different drone capabilities Considers different drone capabilities 

Query execution is slow compared to DIMPL Query execution is fast comparitively 

Increased number of nodes does not cause more optimization Increased number of nodes does not cause more optimization 

Hadoop 2.5.1,MapReduce2 is used Spark 1.5.1 is used 

Less fault tolerant more fault tolerant 

 

V. Conclusions 
Both the algorithms provided a decent approach to flexibly divide a large area into subregions and 

dynamically readjust them to optimally cover each region with a single drone flight. The algorithms combine 

spatial data and drone limitations or constraints, which are modeled as linear inequalities, to automate the flight 

paths of the drones. The distributed implementation provides an outstanding way to handle large datasets that 

cannot be processed on a single node. Utilizing in-memory distribution significantly speeds up the flight paths 

building process compared to disk based distribution . The flight plans produced by the new distributed model 

are similar in numbers to those obtained by single node implementations but aregenerated more efficiently. The 

technique applied here is not only useful for the assigned task of surveying power lines but can easily be 
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extended to a host of other drone applications such as surveying coastlines for hurricane damage, forest surveys 

for logging, farm surveys for fertilization, insecticide spraying and watering[17], and many others. 

 

VI. Future Scope 
The presented scenario is easy to implement ,reliable and cost effective.Considering the huge 

environment it has been designed for ,we can build a complete medical solution for high altitude areas with 

varying terrain where human reachability is limited.The drone can be planned to effectively deliver urgent 

medicine in medical centres in these areas at times of natural calamity like earthquakes and flood.However  an 

effective solution needs to be in process to handle unavoidable obstruction and bad weather conditions. 
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