Modeling of Mn²⁺ doped MgV₂O₆ Crystal

Ram Kripal, Lal Chandra Shukla and Upendra Mani Tripathi

EPR laboratory, Department of Physics, University of Allahabad, Allahabad, India-211002

ABSTRACT: The crystal field parameters (CFPs) of Mn^{2+} in magnesium meta-vanadate, MgV_2O_6 (MMV) crystal are determined using the superposition model. The zero field splitting parameters (ZFSPs) D and E are obtained using perturbation and microscopic spin Hamiltonian (SH) theory. The theoretical ZFSPs are compared with the experimental ones. The ZFSPs D and E obtained theoretically are in good agreement with the experimental values found by electron paramagnetic resonance. The results indicate that the Mn^{2+} ion occupies Mg^{2+} substitutional site in MMV.

KEYWORDS - C. Crystal structure and symmetry; D. Crystal and ligand fields; D. Optical troduction properties; E. Electron paramagnetic resonance.

Date of Submission: 20-03-2021

Date of Acceptance: 04-04-2021

I. INTRODUCTION

The superposition model was developed in order to find physical and geometrical information contained in crystal field parameters [1, 2]. The positions of different ligands are needed in applying this model. Therefore, the relation between the model and the theories of local distortion in crystals is of particular interest. A one-parameter model was used [3] to describe the position of the Fe³⁺ ion relative to the surrounding oxygen octahedron, assumed to be undisturbed by the substitution. Mn²⁺ spin Hamiltonian parameters were analyzed [4] using this model together with local distortion and quite reasonable results were obtained.

Theoretical studies on the spin Hamiltonian parameters of d^5 ions have become the matter of interest of many researchers [5-14]. Various mechanisms have been suggested to contribute to the ground state splitting of the magnetic ions introduced in the lattices [15]. The effect of spin Hamiltonian mechanism is normally considered by perturbation procedures. In most of the used perturbation procedure, cubic field and the diagonal part of free-ion Hamiltonian are considered as unperturbed terms while the spin-orbit coupling, the low-symmetry field, and the off-diagonal part of free-ion Hamiltonian are taken as the perturbation terms [16].

Electron paramagnetic resonance (EPR) studies of Mn^{2+} doped magnesium meta-vanadate, MgV_2O_6 (MMV) single crystals have been reported [17]. Two possibilities exist for Mn^{2+} site in the MMV crystal, namely substitutional and interstitial. It is interesting to investigate the site of the impurity. It was suggested [17] that Mn^{2+} ion enters the lattice substitutionally at Mg^{2+} site. In the present study, the axial and rhombic zero-field splitting parameters (ZFSPs) are computed for the Mn^{2+} ion existing at substitutional Mg^{2+} site in MMV; using crystal field parameters (CFPs) obtained from superposition model and perturbation expressions [18]. The result derived from this model is in reasonable agreement with the experimental finding.

II. CRYSTAL STRUCTURE

The MMV single crystals are monoclinic, space group C2/m with Z = 2 [17, 19]. The unit cell dimensions are a = 0.9279 (7) nm, b = 0.3502 (2) nm, c = 0.6731 (6) nm and \Box = 111.77(6)° [17]. The structure consists of Mg²⁺ lying at a site of 2/m symmetry octahedrally coordinated to oxygen atoms with an average separation of 0.2140 nm. The remaining atoms lie in crystallographic mirror planes with V ion coordinated to six oxygen atoms having bond distances ranging from 0.1666 to 0.2671 nm. (Fig.1).

Fig. 1: Coordination around Mn²⁺ in MMV single crystal.

III. THEORETICAL INVESTIGATION

The experimental resonance fields can be obtained using the spin Hamiltonian [20, 21]

$$\mathcal{H} = g\mu_{B}B.S + D\{S_{z}^{2} - \frac{1}{3}S(S+1)\} + E(S_{x}^{2} - S_{y}^{2}) + (\frac{a}{6})[S_{x}^{4} + S_{y}^{4} + S_{z}^{4} - \frac{1}{5}S(S+1)(3S^{2} + 3S-1)] \\ + \frac{F}{180}\{35 S_{z}^{4} - 30 S(S+1)S_{z}^{2} + 25S_{z}^{2} - 6S(S+1) + 3S^{2}(S+1)^{2}\} + \frac{K}{4}[\{7S_{z}^{2} - S(S+1) - 5\}] \\ (S_{z}^{+} + S_{z}^{-}) + (S_{z}^{+} + S_{z}^{-})\{7S_{z}^{2} - S(S+1) - 5\}] + \mathcal{A}S_{z}I_{z} + \mathcal{B}(S_{x}I_{x} + S_{y}I_{y})$$
(1)

where g is the isotropic spectroscopic splitting factor, μ_B is the Bohr magneton, **B** is the external magnetic field. D and E are the second-rank axial and rhombic ZFSPs, whereas a, F, and K are the fourth-rank cubic, axial and rhombic ones, respectively. The last two terms in Eq. (1) represent the hyperfine (I = 5/2) interaction. The F and K terms are deleted here as their effect is small [20, 22, 23]. The isotropic approximation used for the electronic Zeeman interaction is generally valid for $3d^5$ ions [20, 24]. The two approximations in question may slightly affect the fitted value of a [25]. The direction of the maximum overall splitting of EPR spectrum is taken as the z axis and that of the minimum as the x axis [26]. The laboratory axes (x, y, z) determined from EPR spectra are found to coincide with the crystallographic axes (CA). The z-axis of the local site symmetry axes, i.e. the symmetry adapted axes (SAA) is along the metal oxygen bond and the other two axes (x, y) are perpendicular to the z-axis.

In MMV, magnesium ion is located within a distorted octahedron of oxygen ions [17, 19] and the local symmetry is approximately orthorhombic of first kind (OR-I) [27]. In an OR-I symmetry, the SO contributions to the ZFSPs D and E of $3d^5$ ions were obtained [18, 28] as:

$$D^{(4)}(SO) = (3\xi^{2}/70P^{2}D) (-B_{20}^{2} - 21 \xi B_{20} + 2B_{22}^{2}) + (\xi^{2}/63P^{2}G) (-5B_{40}^{2} - 4B_{42}^{2} + 14B_{44}^{2})$$
(2)
$$E^{(4)}(SO) = (\sqrt{6} \xi^{2} / 70P^{2}D) (2B_{20}-21 \xi) B_{22} + (\xi^{2} / 63P^{2}G) (3\sqrt{10} B_{40} + 2\sqrt{7} B_{44}) B_{42}$$
(3)

where P = 7B+7C, G = 10B+5C, and D = 17B+5C; B and C are the Racah parameters. Only fourth order term is taken up here as the first-, second-, third-, fifth- and sixth-order perturbations of D and E are zero [18]. Eqs. (2) and (3) are appropriate for weak-field cases, and are also correct even when the low-symmetry components are comparable with the cubic part [18].

By considering the covalency effect via the average covalency parameter N, the B, C and ξ are expressed in terms of N as [29-30]

$$\mathbf{B} = \mathbf{N}^4 \mathbf{B}_0, \ \mathbf{C} = \mathbf{N}^4 \mathbf{C}_0; \ \xi_d = \mathbf{N}^2 \ \xi_d^0 \tag{4}$$

where B_0 and C_0 , and ξ_d^0 are the free ion Racah and the spin-orbit coupling parameters, respectively [29-30]. The following values of B_0 and C_0 , and ξ_d^0 for free Mn^{2+} ion are used: $B_0 = 960 \text{ cm}^{-1}$, $C_0 = 3325 \text{ cm}^{-1}$, $\xi_d^0 = 336 \text{ cm}^{-1}$ [20].

From optical absorption study of Mn²⁺ doped crystal with oxygen ligands [31]: B = 917cm⁻¹ and C = 2254 cm⁻¹ ¹were obtained. The average value [30] of N = $(\sqrt{\frac{B}{B_0}} + \sqrt{\frac{C}{C_0}}) / 2 = 0.91$ is used to calculate the ZFSPs D and E from Eqs. (2) and (3).

The superposition model is used to calculate the CFPs, B_{kq} for Mn^{2+} ion in MMV single crystal and ZFSPs are then calculated using these B_{kq} parameters.

The superposition model has been quite successful in explaining the crystal-field splitting of the $4f^n$ ions [32] and recently of some $3d^n$ ions [33, 34-35]. The superposition model expresses the CFPs as [18, 32]

$$\mathbf{B}_{kq} = \sum \bar{\mathbf{A}}_{k} (R_{i}) \mathbf{K}_{kq} (\theta_{i}, \phi_{i})$$
(5)

where R_j are the distances between the paramagnetic ion Mn^{2+} and the ligand ion j, R_0 is the reference distance, normally chosen near a value of the R_j 's. θ_j are the bond angles in a chosen axis system (preferably symmetry adapted axes system (SAAS)) [36, 37]. Summation is taken over all the nearest neighbour ligands. The coordination factor K_{kq} (θ_j , ϕ_j) are the explicit functions of angular position of ligand [18, 36, 38-39]. The intrinsic parameter $\overline{A_k}$ (R_j) is given by the power law [16, 27]:

$$\overline{A_{k}}(R_{j}) = \overline{A_{k}}(R_{0})(R_{0}/R_{j})^{t_{k}}$$
(6)

where A_k (R₀) is intrinsic parameter for a given ion host system. The symbol t_k is power law exponent. The crystal-field parameters B_{kq} may be determined using the superposition model given by Eq. (5) and are presented in Appendix A [40].

For $3d^5$ ions, $\overline{A_2}(R_0)/\overline{A_4}(R_0)$ is 8-12 [5, 34]. In the present study, we have taken $\overline{A_2}(R_0)/\overline{A_4}(R_0)$

 $\overline{A_4}$ (R₀) = 10. For 3d^N ions in the 6-fold cubic coordination $\overline{A_4}$ (R₀) can be found from the relation: $\overline{A_4}$ (R₀) = (3/4) Dq [18]. As $\overline{A_4}$ (R₀) is independent of the coordination [41], we have used above relation to determine $\overline{A_4}$ (R₀) in our calculation using Dq = 756 cm⁻¹ [31]. The values of R_1 , R_1 , R_2 , R_3 , R_3 , R_3 ; θ_1 , θ_1 , θ_2 , θ_2 , θ_3 , θ_3 ; ϕ_1 , ϕ_1 , ϕ_2 , ϕ_2 , ϕ_3 and ϕ_3 used in the calculation are: 0.213 nm, 0.524 nm, 0.481 nm,

 $0.188 \text{ nm}, 0.508 \text{ nm}, 0.460 \text{ nm}; 87.4^{\circ}, 87.0^{\circ}, 83.4^{\circ}, 93.7^{\circ}, 93.1^{\circ}, 97.1^{\circ}; 86.5^{\circ}, 85.1^{\circ}, 87.7^{\circ}, 94.9^{\circ}, 95.2^{\circ} \text{ and } 92.4^{\circ}, \text{ respectively.}$

IV. RESULT AND DISCUSSION

At first to check the substitution at Mg^{2+} site, the origin of Mn^{2+} was shifted at the Mg^{2+} ion. Since the ionic radius of the impurity Mn^{2+} ion (0.080 nm) is slightly larger than that of the host Mg^{2+} (0.072 nm), a distortion can be expected [42]. Taking the coordinates x, y, z; the bond distances of different ligands, R_j as well as the angles θ_j and ϕ_j were calculated and are given in Table 1.

Table 1: Coordinates of oxygen ligands, Mn-oxygen bond distances R_{i} and coordination

angles θ_{j} and ϕ_{j}	for Mn ²⁺ ion doped MMV single crystals (without
	distortion).

MetMetal	and						
Oxygen	х у	z Mi	n-oxygen ł	oond distan	ce Angle θ_{j}	Angle ϕ_{j}	Ligands
R_{i} (nm)		(Degree)	(Degre	ee)			
Ma	0	0	0				
Mg	0	0	0				
O(1)	0.1517	0.5	0.1133	0.248	87.4	86.5	
O(2)	0.4607	0.5	0.2764	0.536	87.0	85.1	
O(3)	0.1930	0.5	0.5652	0.491	83.4	87.7	
O(4)	-0.1517	0	-0.1133	0.176	93.7	94.9	
O(5)	-0.4607	0	-0.2764	0.507	93.1	95.2	
O(6)	-0.1930	0	-0.5652	0.459	97.1	92.4	

In adjusting the Mn-O distances to match the experimental result, the site symmetry is preserved as well as the energy is minimised and thus the structural stability is taken into consideration. Taking R₀ as slightly larger than the minimum of R_j [43], i.e. R₀ = 0.214 nm, $\overline{A_2}$ (R₀) / $\overline{A_4}$ (R₀) = 10, t₂= 3, t₄= 7 [5]; consideration no distortion, we obtain B₂₀= 16313.54, B₂₂ = -264.45, B₄₀ = -1038.5, B₄₂ = 453.77, B₄₄ = -100.91 cm⁻¹ and then |D| and |E| to be 423 × 10⁻⁴ cm⁻¹ and 14.9 × 10⁻⁴ cm⁻¹, respectively, which are inconsistent with the experimental values. Therefore, we have considered the distortion. The bond distances of different ligands R_j and the angles θ_j and ϕ_j calculated for this case are given in Table 2.

Metal-oxygen	Metal-oxygen bond distance R_j (nm)	Angle θ (Degree)	, Angle ϕ_{j} (Degree)
Mn-O(1)	0.213	87.4	86.5
Mn-O(2)	0.524	87.0	85.1
Mn-O(3)	0.481	83.4	87.7
Mn-O(4)	0.188	93.7	94.9
Mn-O(5)	0.508	93.1 95.	2
Mn-O(6)	0.460	97.1	92.4

Table 2: Metal-oxygen bond distances R_j and coordination angles θ_j and ϕ_j for Mn²⁺ ion doped MMV single crystals (with distortion).

The calculated B_{kq} parameters are: $B_{20} = 16444.05$, $B_{22} = -1070.07$, $B_{40} = -1053.92$, $B_{42} = -1380.02$, $B_{44} = 34.68$ cm⁻¹. After that |D| and |E| are calculated taking other parameters as above, which come out to be 429×10^{-4} cm⁻¹ and 60×10^{-4} cm⁻¹, respectively. This provides |D| and |E| data (Table 3) which are in good agreement with the experimental values.

Table 3: Comparison of the ZFSPs calculated by the superposition model for
the Mn^{2+} ion doped MMVsingle crystal with experimental values.

	Values of ZFSPs (× 10^{-4} cm ⁻¹) D E E / D		
Calculated	429	60	0.14
Experimental	428.9	60.7	0.14

Such model calculations have been done earlier in case of Mn^{2+} and Fe^{3+} doped anatase TiO₂ crystal [44]. Therefore, we can say that Mn^{2+} ion substitutes the Mg^{2+} ion. In this way, the conclusion drawn on the basis of superposition model supports the experimental result that Mn^{2+} ions take up substitutional Mg^{2+} site in the crystal [17]. For comparison we have also investigated the interstitial sites for Mn^{2+} ions. The predicted values of ZFSPs come out to be inconsistent with the experimental ones and hence we are not giving this result here.

V. CONCLUSIONS

The zero field splitting parameters (ZFSPs) have been determined using the superposition model and perturbation formulae. The experimental ZFSPs obtained for Mn^{2+} ion in MMV single crystal are in good agreement with the calculated ZFSPs at the substitutional Mg^{2+} site. We suggest that the Mn^{2+} ion occupies substitutional Mg^{2+} site in MMV. The results support the conclusion drawn from experimental study.

ACKNOWLEDGEMENT

The authors are thankful to the Head, Department of Physics, University of Allahabad for providing the facilities of the department.

REFERENCES

- [1]. M. I. Bradbury, D. J. Newman, Ratios of crystal field parameters in rare earth salts, Chem. Phys. Lett. 1,1967, 44-45.
- [2]. D. J. Newman, On the g-shift of S-state ions, J. Phys. C: Solid State Phys. 10 (1977) L315-L318.
- [3]. E. Siegel and K. A. M ü ller, Local position of Fe3+ in ferroelectric BaTiO3, Phys. Rev. B 20, 1979, 3587-95.
- [4]. Y. Y. Yeung, Local distortion and zero-field splittings of 3d⁵ ions in oxide crystals, J. Phys. C: Solid State Phys. 21,1988,2453-61.
- [5]. T. H. Yeom, S. H. Choh, M. L. Du, A theoretical investigation of the zero-field splitting parameters for an Mn²⁺ centre in a BiVO₄ single crystal, J. Phys.: Condens. Matter 5, 1993, 2017-2024.
- [6]. M. J. D. Powell, J. R. Gabriel, D. F. Johnston, Ground-State Splitting for d⁵ ⁶S Ions in a Cubic Field, Phys. Rev. Lett. 5, 1960, 145-146.
- [7]. H. Watnabe, On the Ground Level Splitting of Mn⁺⁺ and Fe⁺⁺⁺ in Nearly Cubic Crystalline Field, Prog. Theor. Phys. 18, 1960, 405-420.
- [8]. H. Watnabe, Proposal for an Electron Spin Resonance Experiment of S-State Ions Under High Hydrostatic Pressure, Phys. Rev. Lett. 4, 1960, 410-411.
- J. R. Gabriel, D. F. Johnston, M. J. D. Powell, A calculation of the ground-state splitting for Mn²⁺ ions in a cubic field, Proc. Roy. Soc. A264, 1961, 503-515.
- [10]. W. Low, G. Rosengarten, The optical spectrum and ground-state splitting of Mn²⁺ and Fe³⁺ lons in the crystal field of cubic symmetry, J. Mol. Spectrosc. 12, 1964, 319-346.
- [11]. M. Sato, A. S. Rispin, H. Kon, EPR studies on high-spin (Fe(III) tetraphenylporphine having rhombic character. Spin hamiltonian and crystal field analysis of g values, Chem Phys. 18, 1976, 211-224.
- [12]. M. L Du, M. G. Zhao, The eighth-order perturbation formula for the EPR cubic zero-field splitting parameter of d⁵(⁶S) ion and its applications to MgO: Mn²⁺ and MnCl₂.2H₂O, J. Phys. C: Solid State Phys. *18*, 1985, 3241-3248.
- [13]. X. Y. Kuang, Z. H. Chen, Ground-state zero-field splitting for the Fe³⁺ ion in a cubic field, Phys. Rev. *B* 36, 1987, 797-798.
- [14]. W. L. Yu, Cubic zero-field splitting of a ⁶S state ion, Phys. Rev. *B* 39, 1989, 622-632.
- [15]. M. G. Brik, C. N. Avram, N. M Avram, Calculations of spin Hamiltonian parameters and analysis of trigonal distortions in LiSr(Al,Ga)F₆:Cr³⁺ crystals, Physica *B* 384, 2006, 78-81.
- [16]. Z. Y. Yang, An investigation of the EPR zero-field splitting of Cr³⁺ ions at the tetragonal site and the Cd²⁺ vacancy in RbCdF₃:Cr³⁺ crystals, J. Phys.: Condens. Matter 12, 2000, 4091-4096.
- [17]. H. N. Ng, C. Calvo, Crystal Structure of and Electron Spin Resonance of Mn²⁺ in MgV₂O₆, Can. J. Chem. 50, 1972, 3619-3624.
- [18]. W. L. Yu, M.G. Zhao, Spin-Hamiltonian parameters of ^{6}S state ions, Phys. Rev. *B* 37, 1988, 9254-9267.
- [19]. R. Ruh, A. D. Wadsley, The crystal structure of ThTi₂O₆ (brannerite), Acta Cryst. 21,1966, 974-978.
- [20]. A. Abragam, B. Bleaney, EPR of Transition Ions (Clarendon Press, Oxford, 1970).
- [21]. C. Rudowicz, Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review, Magn. Reson. Rev. *13*, 1987, 1-89.
- [22]. C. Rudowicz, H. W. F. Sung, Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?, Physica *B 300*, 2001, 1-26.
- [23]. C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, Electron paramagnetic resonance of Fe³⁺ ions in (NH₄)₂SbF₅, J. Chem. Phys. 62, 1975, 4948-4952.
- [24]. J. A. Weil, J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd Edition (Wiley, New York, 2007).
- [25]. C. Rudowicz, S. B. Madhu, Orthorhombic standardization of spin-Hamiltonian parameters for transition-metal centres in various Crystals, J. Phys.: Condens. Matter 11, 1999, 273-288.
- [26]. C. Rudowicz and R. Bramley, On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry, J. Chem. Phys. 83, 1985, 5192-5197; R. Kripal, D. Yadav, C. Rudowicz and P. Gnutek, Alternative zero-field splitting (ZFS) parameter sets and standardization for Mn²⁺ ions in various hosts exhibiting orthorhombic site symmetry, J. Phys. Chem. Solids, 70, 2009, 827-833.
- [27]. C. Rudowicz, Y. Y. Zhao, W. L. Yu, Crystal field analysis for 3d⁴ and 3d⁶ ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites, J. Phys. Chem. Solids 53, 1992,1227-1236.
- [28]. W. L. Yu, M. G. Zhao, Zero-field splitting and the d-d transitions of Mn^{2+} on Ca(II) sites in Ca₅(PO₄)₃F, Phys. Stat. Sol. (b) 140, 1987, 203-212.
- [29]. C. K. Jorgensen, Modern Aspects of Ligand Field Theory (North-Holland, Amsterdam, 1971) p 305.
- [30]. M. G. Zhao, M. L. Du, G. Y. Sen, A μ-κ-α correlation ligand-field model for the Ni2+-6X- cluster, J. Phys. C: Solid State Phys. 20, 1987, 5557-5572; Q. Wei, Investigations of the Optical and EPR Spectra for Cr3+ Ions in Diammonium Hexaaqua Magnesium Sulphate Single Crystal, Acta Phys. Polon. A118, 2010, 670-672.
- [31]. R. Kripal, H. Govind, S. K. Gupta, M. Arora, EPR and optical absorption study of Mn²⁺-doped zinc ammonium phosphate hexahydrate single crystals, Physica *B* 392, 2007, 92-98.
- [32]. D. J. Newman, Theory of lanthanide crystal fields, Adv. Phys. 20, 1970, 197-256.
- [33]. Y. Y. Yeung, D. J. Newman, Superposition-model analyses for the $Cr^{3+4}A_2$ ground state, Phys. Rev. *B* 34, 1986, 2258-2265.
- [34]. D. J. Newman, D. C. Pryce, and W. A. Runciman, Superposition model analysis of the near infrared spectrum of Fe (super 2+) in
- pyrope-almandine garnets, Am. Miner. 63, 1978, 1278-1281.
- [35]. G. Y. Shen, M. G. Zhao, Analysis of the spectrum of Fe2+ in -pyrope garnets, Phys. Rev. B 30, 1984, 3691-3703.
- [36]. D. J. Newman and B. Ng, The superposition model of crystal fields, Rep. Prog. Phys. 52, 1989, 699-763.
- [37]. M. Andrut, M. Wildner, C. Rudowicz, Optical Absorption Spectroscopy in Geosciences, Part II: Quantitative Aspects of Crystal Fields, Spectroscopic Methods in Mineralogy (EMU Notes in Mineralogy, Vol. 6, Ed. A. Beran and E. Libowitzky, Eötvös University Press, Budapest, Chapter 4, 2004) p.145-188.
- [38]. C. Rudowicz, Transformation relations for the conventional O_k^q and normalised O_k^q Stevens operator equivalents with k=1 to 6 and $-k \le q \le k$, J. Phys. C: Solid State Phys. 18,1985, 1415-1430; On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators, 20,1987, 6033- 6037.

- [39]. M. Karbowiak, C. Rudowicz, P. Gnutek, Energy levels and crystal-field parameters for Pr^{3+} and Nd^{3+} ions in rare earth (RE) tellurium oxides $RE_2Te_4O_{11}$ revisited Ascent/descent in symmetry method applied for triclinic site symmetry, Opt. Mater. 33, 2011,1147-1161.
- [40]. K. T. Han, J. Kim, A theoretical analysis of zero-field splitting of **M1n²⁺⁺** in sodium nitrite, J. Phys.: Condens. Matter 8, 1996, 6759-6767.
- [41]. P. Gnutek, Z. Y. Yang, C. Rudowicz, Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal Fe_K³⁺-O_I²⁻ defect center in KTaO₃ crystal, J. Phys.: Condens. Matter 21, 2009, 455402-455412.
 [42]. V. V. Laguta, M. D. Glinchuk, I. P. Bykov, J. Rosa, L. Jastrabik, M. Savinov, Z. Trybula, Paramagnetic dipole centers
- [42]. V. V. Laguta, M. D. Glinchuk, I. P. Bykov, J. Rosa, L. Jastrabik, M. Savinov, Z. Trybula, Paramagnetic dipole centers in KTaO₃: Electron-spin-resonance and dielectric spectroscopy study, Phys. Rev. *B61*, 2000, 3897-3904.
- $[43]. \quad C. Rudowicz, Y. Y. Zhou, Microscopic study of Cr^{2+} ion in the quasi-2D mixed system Rb_2Mn_xCr_{1-x}Cl_4, J. Magn. Mater. \\ 111, 1992, 153-163.$
- [44]. M. Acikgöz, P. Gnutek, C. Rudowicz, Modeling zero-field splitting parameters for dopant Mn²⁺ and Fe³⁺ ions in anatase TiO₂ crystal using superposition model analysis, Chem. Phys. Letts. *524*, 2012, 49-55.

Ram Kripal. "Modeling of Mn2+ doped MgV2O6 Crystal." *International Journal of Engineering Science Invention (IJESI)*, Vol. 10(04), 2021, PP 14-20. Journal DOI- 10.35629/6734