Spectral and Raman Analysis of Sm³⁺Doped in ZincLithium Soda limeAluminoSilicate Glasses

S.L.Meena

Ceremic Laboratory, Department of physics, Jai NarainVyas University, Jodhpur 342001(Raj.) India

Abstract

Glass of the system: $(40-x)SiO_2:10ZnO:10Li_2O:10CaO:10Na_2O:20Al_2O_3:xSm_2O_3$ (where x=1, 1.5,2 mol %) have been prepared by melt-quenching method (where x=1,1.5,2 mol%) have been prepared by melt-quenching technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction. The absorption spectra of three Sm^{3+} doped zinc lithium soda lime alumino silicate glasses have been recorded at temperature. The various interaction parameters likeSlater-Condon parameters room F_{k} $(b^{1/2})$ and (β') , bonding (k=2,4,6), Lande' parameter (ξ_{4f}) , nephelauexetic ratio parameters Racah parameters $E^{k}(k=1,2,3)$ have been computed. Judd-Ofelt intensity parameters and laser parameters have also been calculated.

Keywords: ZLSLAS Glasses, Optical properties, Judd-Ofelt analysis. Raman Analysis.

Date of Submission: 29-03-2021 Date of Acceptance: 12-04-2021

I. INTRODUCTION

Rare earth doped silicate glasses are being extensively studied due to their technological importance and their applications in solid state lasers,optical fibers and optical amplifiers [1-5].Among rare earth ion doped glasses, borosilicate glasses are popular host materials due to their good transparency and easy to draw into fibers for different laser applications [6-8].Silicate glasses possess excellent optical properties, chemical durability and better mechanical properties. Silicate glasses possess unique and interesting optical, thermal, and electrical properties which make them candidates for a wide range of applications [9-12]. Due to their good chemical durability, samarium-doped soda-lime silicate glasses are attractive materials for the fabrication of low-cost integrated optical amplifiers by using the ion-exchange technique [13-15]. Silicate Glasses are both scientifically and technologically important materials because they generally offer some unique physical properties better than other Glasses [16-18]. Among active rare-earth ions Sm³⁺ exhibits high solubility in ceramic glasses, which also possess excellent optical and physical properties [19-22].

The aim of the present study is to prepare the Sm^{3+} dopedzinc lithium soda lime alumino silicateglass with different Sm_2O_3 concentrations. The absorption spectra, fluorescence spectra of Sm^{3+} of the glasses were investigated. The Judd-Ofelt theory has been applied to compute the intensity parameters Ω_{λ} (λ =2, 4,6). These intensity parameter have been used to evaluate optical optical properties such as spontaneous emission probability, branching ratio, radiative life time and stimulated emission cross section. Large stimulated emission cross section is one of the most important parameters required for the design of high peak power solid state lasers.

II. EXPERIMENTAL TECHNIQUES

Preparation of glasses

The following Sm^{3+} doped zinc lithium soda lime alumino silicate glass samples (40-x)SiO₂:10ZnO:10Li₂O:10CaO:10Na₂O:20Al₂O₃:xSm₂O₃. (where *x* = 1, 1.5, 2) have been prepared by meltquenching method. Analytical reagent grade chemical used in the present study consist of SiO₂,ZnO, Li₂O,CaO, Na₂O, Al₂O₃ and Sm₂O₃. They were thoroughly mixed by using an agate pestle mortar. then melted at 1055⁰C by an electrical muffle furnace for 2h., After complete melting, the melts were quickly poured in to a preheated stainless steel mould and annealed at temperature of 250⁰C for 2h to remove thermal strains and stresses.Every time fine powder of cerium oxide was used for polishing the samples. The glass samples so prepared were of good optical quality and were transparent.The chemical compositions of the glasses with the name of samples are summarized in Table 1.

Table 1

Chemical composition	n of the glasses
Sample	Glass composition (mol %)
ZLSLAS (UD)	40SiO ₂ :10ZnO:10Li ₂ O:10CaO:10Na ₂ O:20Al ₂ O ₃
ZLSLAS M(SM1)	39SiO ₂ :10ZnO:10Li ₂ O:10CaO:10Na ₂ O:20Al ₂ O ₃ :1 Sm ₂ O ₃
ZLSLAS(SM 1.5)	38.5SiO ₂ :10ZnO:10Li ₂ O:10CaO:10Na ₂ O:20Al ₂ O ₃ :1.5 Sm ₂ O ₃
ZLSLAS(SM 2)	38 SiO ₂ :10ZnO:10Li ₂ O:10CaO:10Na ₂ O:20Al ₂ O ₃ : 2 Sm ₂ O ₃

ZLSLAS(UD) -Represents undopedZinc Lithium Soda Lime AluminoSilicate glass specimens. ZLSLAS(SM) -Represents Sm³⁺ dopedZinc Lithium Soda Lime Alumino Silicateglass specimens.

III. THEORY

3.1Oscillator Strength

The intensity of spectral lines are expressed in terms of oscillator strengths using the relation [23].

$$f_{\text{expt.}} = 4.318 \times 10^{-9} \mathrm{sc}(v) \,\mathrm{d}v$$
 (1)

where, $\varepsilon(v)$ is molar absorption coefficient at a given energy $v(cm^{-1})$, to be evaluated from Beer–Lambert law.

)

Under Gaussian Approximation, using Beer-Lambert law, the observed oscillator strengths of the absorption bands have been experimentally calculated [24], using the modified relation:

$$P_{\rm m} = 4.6 \times 10^{-9} \times \frac{1}{cl} \log \frac{I_0}{I} \times \Delta v_{1/2}$$
(2)

where c is the molar concentration of the absorbing ion per unit volume, I is the optical path length, $logI_0/I$ is optical density and $\Delta v_{1/2}$ is half band width.

3.2. Judd-Ofelt Intensity Parameters

According to Judd [25] and Ofelt [26] theory, independently derived expression for the oscillator strength of the induced forced electric dipole transitions between an initial J manifold $|4f^{N}(S, L) J\rangle$ level and the terminal J' manifold $|4f^{N}(S', L') J'>$ is given by:

$$\frac{8\Pi^2 m c \bar{\nu}}{3h(2J+1)} \frac{1}{n} \left[\frac{(n^2+2)^2}{9} \right] \times S(J, J^{-})$$
(3)
Where, the line strength S (S', L')

is given by the equation $\begin{array}{c} S \ (J,\,J') = \!\!e^2 \sum \Omega_{\lambda} \!\!< \!\!4 f^N(S,\,L) \ J \left\| U^{(\lambda)} \right\| 4 f^N(S',\,L') \ J \!\!> \!\!2 \end{array}$

 $\lambda = 2.4.6$

In the above equation m is the mass of an electron, c is the velocity of light, v is the wave number of the transition, h is Planck's constant, n is the refractive index, J and J' are the total angular momentum of the initial and final level respectively, Ω_{λ} ($\lambda = 2, 4, 6$) are known as Judd-Ofelt intensity parameters.

3.3 Radiative Properties

The Ω_{λ} parameters obtained using the absorption spectral results have been used to predict radiative properties such as spontaneous emission probability (A) and radiative life time (τ_R), and laser parameters like fluorescence branching ratio ($\beta_{\rm R}$) and stimulated emission cross section ($\sigma_{\rm p}$).

The spontaneous emission probability from initial manifold $|4f^{N}(S', L') J'>$ to a final manifold $|4f^{N}(S,L) J$ > is given by:

A [(S', L') J'; (S,L)J] =
$$\frac{64 \pi^2 v^3}{3h(2J'+1)} \left[\frac{n(n^2+2)^2}{9} \right] \times S(J', J)$$
 (4)

Where, S (J', J) = $e^2 \left[\Omega_2 \right] U^{(2)} = \Phi_4 \left[U^{(4)} \right]^2 + \Omega_6 \left[U^{(6)} \right]^2$

The fluorescence branching ratio for the transitions originating from a specific initial manifold $|4f^{N}(S', L')|$ J'> to a final many fold $|4f^{N}(S,L)J\rangle$ is given by

$$\beta[(S', L') J'; (S, L) J] = \sum \frac{A[(S' L)]}{A[(S' L')]'(S L)]}$$
(5)

SLJ

where, the sum is over all terminal manifolds.

The radiative life time is given by

$$\tau_{rad} = \sum A[(S', L') J'; (S, L)] = A_{Total}^{-1}$$
(6)

SLJ

where, the sum is over all possible terminal manifolds. The stimulated emission cross -section for a transition from an initial manifold $|4f^{N}(S', L') J\rangle$ to a final manifold $|4f^{N}(S,L)J\rangle|$ is expressed as

$$\sigma_p(\lambda_p) = \left[\frac{\lambda_p^4}{8\pi c n^2 \Delta \lambda_{eff}}\right] \times A[(S', L')J'; (\bar{S}, \bar{L})\bar{J}]$$
(7)

where, λ_p the peak fluorescence wavelength of the emission band and $\Delta \lambda_{eff}$ is the effective fluorescence line width.

3.4 Nephelauxetic Ratio (β) and Bonding Parameter (b^{1/2})

 $b^{1/2} = \left|\frac{1-\beta'}{2}\right|^{1/2}$

The nature of the R-O bond is known by the Nephelauxetic Ratio (β) and Bonding Parameters ($b^{1/2}$), which are computed by using following formulae [27, 28]. The Nephelauxetic Ratio is given by

$$\beta' = \frac{v_g}{v_a} \tag{8}$$

where, v_a and v_g refer to the energies of the corresponding transition in the glass and free ion, respectively. The values of bonding parameter $b^{1/2}$ are given by

IV. RESULT AND DISCUSSION

4.1XRD Measurement

Figure 1 presents the XRD pattern of the sample contain - SiO_2 which is show no sharp Bragg's peak, but only a broad diffuse hump around low angle region. This is the clear indication of amorphous nature within the resolution limit of XRD instrument.

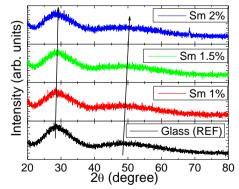


Fig. 1: X-ray diffraction pattern of SiO₂:ZnO:Li₂O:CaO:Na₂O:Al₂O₃:Sm₂O₃

4.2 Raman spectra

The Raman spectrum of Zinc Lithium Soda Lime Alumino Silicate (ZLSLAS) glass specimens is recorded and is shown in Fig. 2. The spectrum peaks located at 600, 795 and 1205 cm⁻¹. The band at 600 and795cm⁻¹ assigned to Si–O–Si symmetric stretching and bending vibration, respectively. The band at 1205 cm⁻¹ assigned to Si–O–Si asymmetric stretching.

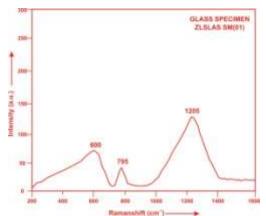


Fig.2 Raman spectrum of ZLSLAS SM (01) glass.

4.3 Absorption Spectrum

The absorption spectra of Sm³⁺ doped ZLSLAS(SM 01) glass specimen has been presented in Figure 3 in terms of optical density versus wavelength (nm). Ten absorption bands have been observed from the ground state ${}^{6}H_{5/2}$ to excited states ${}^{6}F_{1/2}$, ${}^{6}F_{9/2}$, ${}^{4}G_{7/2}$, ${}^{4}I_{9/2}$, ${}^{4}M_{7/2}$, ${}^{(6}P, {}^{4}P)_{5/2}$, ${}^{4}D_{1/2}$, and ${}^{(4}D, {}^{6}P)_{5/2}$ for Sm³⁺dopedZLSLAS glasses

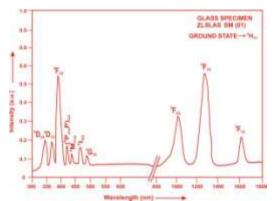


Fig.3: Absorption spectrum of Sm³⁺doped ZLSLAS(01)glass

The experimental and calculated oscillator strengths for Sm^{3+} ions in zinc lithium soda lime alumino silicateglasses are given in Table 2

Energy level from ⁶ H _{5/2}	Glass ZLSLAS (SM01)		Glass ZLSLAS (SM1.5)		Glass ZLSLAS (SM02)	
	P _{exp} .	P _{cal} .	P _{exp} .	P _{cal} .	P _{exp} .	P _{cal} .
${}^{6}F_{1/2}$	1.58	1.59	1.54	1.56	1.50	1.53
⁶ F _{7/2}	5.46	5.47	5.41	5.43	5.37	5.40
⁶ F _{9/2}	3.80	3.82	3.75	3.78	3.71	3.76
${}^{4}G_{7/2}$	0.18	0.12	0.16	0.12	0.14	0.12
${}^{4}I_{9/2}, {}^{4}M_{15/2}, {}^{4}I_{11/2}$	1.16	1.87	1.11	1.85	1.07	1.84
${}^{4}M_{17/2}, {}^{4}G_{9/2}, {}^{4}I_{15/2}$	0.30	0.24	0.27	0.24	0.24	0.24
$({}^{6}P, {}^{4}P)_{5/2}, {}^{4}L_{13/2}$	1.33	1.29	1.29	1.29	1.24	1.28
${}^{4}F_{7/2}, {}^{6}P_{3/2}, {}^{4}K_{11/2}$	5.65	5.54	5.62	5.54	5.57	5.52
${}^{4}D_{1/2}, {}^{6}P_{7/2}, {}^{4}L_{17/2}$	2.44	1.88	2.41	1.86	2.37	1.85
⁴ D _{3/2} , (⁴ D, ⁶ P) _{5/2}	2.68	3.43	2.63	3.41	2.59	3.40
r.m.s. deviation	0.3736		0.3838		0.3901	

Table2: Measured and calculated oscillator stren	gth ($P_m \times 10^{+6}$) of Sm ³⁺ ions in ZLSLAS glasses.
--	--

Computed values of F₂, Lande' parameter (ξ_{4f}), Nephlauxetic ratio(β ') and bonding parameter($b^{1/2}$) for Sm³⁺ doped ZLSLAS glass specimen are given in Table 3.

Lable 3. F	$\gamma_2, \zeta_{4f}, \beta$ and b	parameters for Samarium doped glass specimen.				
Glass Specimen	F ₂	ξ _{4f}	β'	b ^{1/2}		
Sm ³⁺	358.82	1258.16	0.9337	0.1821		

1 1. 1/2

Judd-Ofelt intensity parameters Ω_{λ} (λ =2,4,6) were calculated by using the fitting approximation of the experimental oscillator strengths to the calculated oscillator strengths with respect to their electric dipole contributions. In the present case the three Ω_{λ} parameters follow the trend $\Omega_2 > \Omega_4 > \Omega_6$. The spectroscopic quality factor (Ω_4 / Ω_6) related with the rigidity of the glass system has been found to lie between 1.0825 and 1.0996 in the present glasses.

The value of Judd-Ofelt intensity parameters are given in Table 4

Glass Specimen	$\Omega_2(pm^2)$	$\Omega_4(\text{pm}^2)$	$\Omega_6(\mathrm{pm}^2)$	Ω_4/Ω_6	Ref.
ZLSLAS (SM01)	4.845	4.488	4.146	1.0825	P.W.
ZLSLAS (SM1.5)	4.742	4.486	4.099	1.0944	P.W.
ZLSLAS (SM02)	4.641	4.473	4.068	1.0996	P.W.
TNS (SM)	1.584	0.544	0.394	1.3807	[29]
LBGS(SM)	10.225	7.385	7.443	0.9922	[30]

Table4: Judd-Ofelt intensity parameters for Sm³⁺ doped ZLSLAS glass specimens

4.4. Fluorescence Spectrum

The fluorescence spectrum of Sm³⁺doped in zinc lithium soda lime alumino silicate glass is shown in Figure 4. There are nine broad bands observed in the Fluorescence spectrum of Sm³⁺doped zinc lithium soda lime alumino silicate glass. The wavelengths of these bands along with their assignments are given in Table 5. Fig. (4). Shows the fluorescence spectrum with nine peaks $({}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2})$, $({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2})$, $({}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2})$, $({}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}), ({}^{4}G_{5/2} \rightarrow {}^{6}H_{13/2}), ({}^{4}G_{5/2} \rightarrow {}^{6}F_{3/2}), ({}^{4}G_{5/2} \rightarrow {}^{6}F_{5/2}), ({}^{4}G_{5/2} \rightarrow {}^{6}F_{7/2}) \text{ and } ({}^{4}G_{5/2} \rightarrow {}^{6}F_{9/2}), \text{ respectively for } f_{11/2} \rightarrow {}^{6}F_{11/2})$ glass specimens.

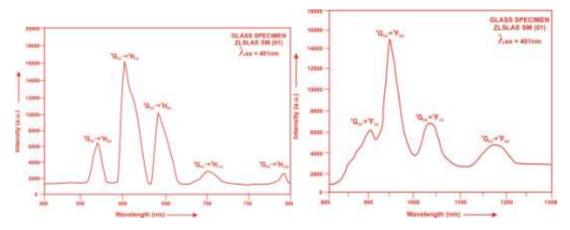


Fig.4: fluorescence spectrum of Sm³⁺doped ZLSLAS(01) glass.

Table5. Emission peak wave lengths (λ_p) , radiative transition probability (A_{rad}) , branching ratio (β) ,stimulated emission cross-section (σ_p) and radiative life time (τ_R) for various transitions in Sm³⁺ doped ZLSLAS glasses.

Transition		ZLSLAS SM 01			ZLSLAS SM 1.5				ZLSLAS SM 02				
λ _{am} / (nm)	Ant(§1)	β	бр (10 ⁻²⁰ cm ²)	TR(µs)	Arat(\$*)	β	σ (10 ⁻²⁰ cm ²)	t⊵(µs)	Ace(\$^3)	β	σ _p (10 ⁻²⁰ cm ²)	tg(µs)	
⁴ G52→ ⁶ H52	562	10.56	0.0367	0.00398	3	10.58	0.0368	0.00434		10.45	0.0369	0.00476	
⁴ G52→ ⁶ H12	602	112.02	0.3898	0.0448		112.19	0.3896	0.0486	1	111.12	0.3928	0.0514	1
⁴ G52→ ⁶ H92	645	106.41	0.3703	0.0423		106.68	0.3705	0.0448	1	103.95	0.3675	0.0456	1
⁴ G52→ ⁴ H112	705	27.45	0.0955	0.0133	8	27.49	0.0955	0.0139	1	27.32	0.0966	0.0145	
⁴ G52→ ⁸ H(32	786	2.62	0.0091	0.00174	3479.71	2.63	0.0091	0.00181	3473.02	2.58	0.0091	0.00186	3535:17
⁴ G52→ ⁸ Fac	915	4.37	0.0152	0.00692		4.38	0.0152	0.0072	10012000	4.20	0.0149	0.00728	
⁴ G52→ ⁶ F52	955	19.70	0.0686	0.0306	1	19.74	0.0686	0.0318		19.06	0.0674	0.0320	
4G52→6F12	1036	2.47	0.0086	0.00448		2.47	0.0086	0.00465		2.47	0.0087	0.0048	
⁴ G52→ [#] F32	1180	1.77	0.0052	0.00459		1.78	0.0062	0.00473		1.71	0.0061	0.00468	

V. CONCLUSION

In the present study, the glass samples of composition(40 x)SiO₂:10ZnO:10Li₂O:10CaO:10Na₂O:20Al₂O₃:xSm₂O₃. (where x=1, 1.5, 2mol %) have been prepared by melt-quenching method. The Judd-Ofelt theory has been applied to calculate the oscillator strength and intensity parameters Ω_{λ} (λ =2, 4, 6). The radiative transition probability, branching ratio are highest for $({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2})$ transition and hence it is useful for laser action. The stimulated emission cross section (σ_{n}) has highest value for the transition $({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2})$ in all the glass specimens doped with Sm³⁺ ion. This shows that $({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2})$ transition is most probable transition. The value of stimulated emission cross-section (σ_{0}) is found to be maximum for the transition $({}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2})$ for glass ZLSLAS (SM 02), suggesting that glass ZLSLAS (SM 02) is better compared to the other two glass systems ZLSLAS (SM 01) and ZLSLAS (SM 1.5).

REFERENCES:

- Dousti, M.R., Poirier, G.Y. and de Camargo, A.S.S.(2020). Tungsten Sodium Phosphate glasses doped with trivalent rare earth ions (Eu³⁺, Tb³⁺, Nd³⁺, Er³⁺) for visible and near infrared applications, Journal of Non- Crystalline Solids 530, 119838.
- [2]. Haijian, L., Jianhua, Y., Zhao, Q., Zhihua, S., Yi, X., Changjian, W., Fengqi, Z., Yucheng, H., Xiaofeng, L. (2019). Structures, Thermal expansion, chemical stability and crystallization behavior of phosphate based glasses by influence of rare earth, Journal of Non- Crystalline Sollids 522,119602.
- [3]. Rasool, N., Moorthy, L. R. and Jayasankar, C. (2013). Spectroscopic Investigation of Sm³⁺ doped phosphate based glasses for reddish-orange emission, OpticsCommunications 311, 156.
- [4]. Klementa, R., Hrukaa, B., Hronský, V. and Ol£ák, D.(2014). Preparation and Characterization of Basic and Er³⁺-Doped Glasses in the System Y₂O₃-Al₂O₃-ZrO₂. Vol. 126, Acta PhysicaPolonica A, 126, 17-21.
- [5]. Murthy Goud, K. K., Ramesh C.H. and Appa Rao, B.(2017).Up conversion andSpectroscopic Properties of Rare Earth Codoped Lead Borate GlassMatrix. Material Science Research India, 14, 140-145.
- [6]. Ramteke, D.D., Kumar, V., Swart, H.C. (2016). Spectroscopic studies of Sm³⁺/Dy³⁺ co-doped lithium boro-silicate glasses, J. Non-Cryst. Solids 438, 49-58.
- [7]. Massera, J., Petit, L., Koponen, J., Glorieux, B., Hupa, L. and Hupa, M.(2015). Er³⁺Al₂O₃ nanoparticles doping of borosilicate glass, Bull. Mater. Sci., 38(5), Indian Academy of Sciences, 1407-1410.
- [8]. Reddi Babu, M., Madhusudhana Rao, N., Mohan Babu, A., Jaidass, N., Krishna Moorthy, C., Rama Moorthy, L. (2016). Effect of Dy³⁺ ions concentration on optical properties of lead borosilicate glasses for white light emission, Optik 127, 3. 3121-3126.
- [9]. Jaidass, N., Krishna Moorthi, C., Mohan Babu, A. and Reddi Babu, M. (2018). Luminescence properties of Dy³⁺ doped lithium zinc borosilicate glasses for photonic applications, Elsevier Ltd, 1-15. Heliyon 4, e00555.
- [10]. Griscom, D. L., Friebele, E. J., Long, K. J., and Fleming, J. W.(1983).Fundamental defect centers in glass electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers, J. Appl. Phys. 54, 3743-3762.
- [11]. Berneschi, S., Bettinelli, M., Brenci, M., Dall'Igna, R., Nunzi Conti, G. Pelli, S., Profilo, B., Sebastiani, S., Speghini, A., Righini, G.C. (2006). Optical and spectroscopic properties of soda-lime alumino silicate glasses doped with Er³⁺ and/or Yb³⁺, Optical Materials 28, 1271–1275.
- [12]. Salinigopal, M.S., Gopakumar, N., and Anjana, P. S.(2017). Studies of dysprosiuma doped silicate glass, IJARSE, 246-251.
- [13]. Munishwar, S.R., Kumar, R. and Gedan, R.S. (2017). Photolumincence study of Sm³⁺ containing sodium borosilicate glasses and glass-ceramics, Materials Research Express, 4, 105201.
- [14]. Thomas, V., Sofin, R.G.S., Allen, M. (2016). Optical analysis of samarium doped sodium bismuth silicate glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 171, 144-148.
- [15]. Bhardwaj, S.,Shukla, R.,Sanghi,S.,Agarwal,A. and Pal, I.(2012). Absorbance and Fluorescence Spectral Analysis of Sm³⁺ Ions Doped Bismuth Boro-Silicate Glasses, Adv. Mat. Research, 585,279-283.
- [16]. Yasukevich, A. S., Rachkovskaya, G.E., Zakharen, G.B., Trusova, E.E., Kornienko, A. A., Dunina, E.B., Kisel, V. E., Kuleshov, N. V. (2020).spectral luminescence properties of oxyfluoride lead silicate germante glass doped with Tm³⁺ ions, Journal of luminescence, 117667.
- [17]. Dutchaneephet, J., Dararutana, P. and Sirikulrat, N. (2017).UV-vis Spectroscopic and Dielectric Properties of Bismuth Borosilicate Glasses Doped with Potassium ChromateChiang Mai J. Sci. 44(3),1083-1090.
- [18]. Kothari, P., Nariyal, R. K.and Bisht, B. (2014). Absorption Spectral Studies of Er³⁺ Ions in Sol–Gel Derived Silica Glass, IJRSI, I (VI), 13-15.
- [19]. Kumar, K. A., Babu, S., Prasad, V. R., Damodaraiah, S. and Ratnakaram Y.C.(2017).Optical response and luminescence characteristics of Sm³⁺ and Tb³⁺/Sm³⁺ co-doped potassium-fluoro-phosphate glasses for reddish-orange lighting applications, Materials Research Bulletin 90,31–40.
- [20]. Marzouk, M.A., ElBatal, H.A., Hamdy, Y. M. and Ezz-Eldin, F.M. (2019). Collective Optical, FTIR and Photoluminescence Spectra of CeO₂ and/or Sm₂O₃-Doped Na₂O–ZnO–P₂O₅ Glasses, Int. J.of Opt., 6527327, 11.
- [21]. Shanmuga, S. S., Marimuthu, K., Sivraman, M. and Babu, S. S.(2010). Composition dependent structural and optical properties of Sm³⁺-doped sodium borate and sodium fluoroborate glasses, Journal of Luminescence, 130,1313–1319.
- [22]. Lin,H. E.V.B. and Wang, X.J.(2005). Intense visible fluorescence and energy transfer in Dy³⁺, Tb³⁺, Sm³⁺, and Eu³⁺ doped rare earth borate glasses, Journal of Alloys and Compounds, 390, 197-201.
- [23]. Gorller-Walrand, C. and Binnemans, K. (1988) Spectral Intensities of f-f Transition. In: Gshneidner Jr., K.A. and Eyring, L., Eds., Handbook on the Physics and Chemistry of Rare Earths, Vol. 25, Chap. 167, North-Holland, Amsterdam, 101.
- [24]. Sharma, Y.K., Surana, S.S.L. and Singh, R.K. (2009). Spectroscopic Investigations and Luminescence Spectra of Sm³⁺ Doped Soda Lime Silicate Glasses. Journal of Rare Earths, 27, 773.
- [25]. Judd, B.R. (1962). Optical Absorption Intensities of Rare Earth Ions. Physical Review, 127, 750.
- [26]. Ofelt, G.S. (1962). Intensities of Crystal Spectra of Rare Earth Ions. The Journal of Chemical Physics, 37, 511.
- [27]. Sinha, S.P. (1983).Systematics and properties of lanthanides, Reidel, Dordrecht.
- [28]. Krupke, W.F. (1974).IEEE J. Quantum Electron QE, 10,450.
- [29]. Mawlud, S.Q., Ameen, M., Sahar, M.R. and Ashur, Z. (2017). Spectroscopic properties of Sm³⁺ doped sodium-tellurite glasses: Judd-Ofelt analysis Article in Optical Materials ,69,318-327.

Spectral and Raman Analysis of Sm³⁺ Doped in Zinc Lithium Soda lime Alumino Silicate Glasses

[30]. Rajaramakrishna, R., Knorr, B., Dierolf, V., Anavekar, R.V. and Jain, H. (2014). Spectroscopic properties of Sm³⁺doped lanthanum borogermanate glass, Journal of Luminescence 156, 192–198.