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Abstract: This work deals with determination of unknown temperature and thermal deflection of thin circular 

plate with the stated conditions. The inverse heat conduction equation is solved by using the Marchi-Fasulo 

integral transform and Laplace transform simultaneously and the results for unknown temperature and thermal 

deflection are obtained in terms of infinite series and it is solved for special case by using Math-cad software 

and illustrated graphically by using Microsoft office excel 2010. 
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I. INTRODUCTION 
The inverse problems of thermoelasticity consist of determination of temperature distribution and thermal 

deflection of solids when the conditions of temperature and deflection are known at the some points of the solid 

under consideration. Grysa and Cialkowski [1], Grysa and Koalowski [2] studied one-dimensional transient 

thermoelastic problems and derived the heating temperature and heat flux on the surface of an isotropic infinite 

slab. In [3] Dai et. al studied Based on the thermoviscoelastic theory and the classic plate theory, 

thermoviscoelastic behavior of a circular plate made from high strength low alloy (HSLA) steel material is 

investigated. The entire problem is solved by utilizing the finite difference method, Newmark method and 

iterative method. Khobragade et al.[4] and [5] discuss an inverse steady state and transient thermoelastic 

problem of thin circular plate and annular disc in Marchi-Fasulo transform domain. Deshmukh et al. [6] 

investigated inverse heat conduction problem of semi-infinite, clamped thin circular plate and their thermal 

deflection by quasi-static approach. Ghonge and Ghadle [7]-[10] investigated an inverse problems of 

thermoelastic behavior in different solids by integral transform methods. Further Ghonge and Ghadle [11]-[14] 

derived the analytical solution to deflection of thermoelastic circular plates for different conditions by using 

Marchi-Fasulo, Marchi-Zgrablich and Laplace integral transform. 

In this work, the temperature, unknown temperature on curved surface and quasi-static thermal deflection 

due to unknown temperature ( , )g z t are discuss. The inverse heat conduction equation is solved by using finite 

Marchi-Fasulo transform and Laplace transform simultaneously and the results for unknown temperature and 

thermal deflection are obtained in terms of infinite series of Bessel's function and it is solved for special case by 

using Math-cad software and illustrated graphically by using Microsoft office excel 2010. 

 

II. CONSTRUCTION OF THE PROBLEM 

Consider a thin circular plate of thickness 2h occupying the space 

 2 2: ( , , ) | 0 , .D x y z r x y a h z h        Suppose the plate is subjected to arbitrary known interior 

temperature ( , )f z t  within the 0 r a   region with third kind condition which assume to be zero at upper 

surface z h and lower surface .z h  Under this more realistic prescribed conditions, the unknown 

temperature on lower surface and quasi-static thermal deflection due to unknown temperature ( , )g z t are 

required to determine. The differential equation satisfying the deflection function as in [15,16] is given as 
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Where, the operator 2 is defined by  
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TM is the thermal moment of the plate defined as  

 ( , , )
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and D is the flexural rigidity of the plate denoted as  
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, E and  are the coefficients of the linear thermal expansion, the Young’s modulus and the Poisson’s ration of 

the plate material respectively.  

Since the edge of the circular plate is fixed and clamped; 
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The temperature of the circular plate satisfying the heat conduction equation as in [15, 16] is as 
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with initial condition 

 ( , , ) 0 0 ,T r z t r a h z h        (0.7) 

the boundary condition's 
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and interior condition 
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where 
1k and 

2k are the radiation constants on the two plane surfaces, k  is the thermal diffusivity of the 

material of the circular plate. The equations (0.1) to (0.11) constitute the mathematical formulation of the 

inverse transient thermoelastic deflection problem of circular plate. 

 

III. ANALYSIS OF THE PROBLEM 

3.1 Determination of Temperature Function 
First applying finite Marchi-Fasulo transform as defined in [4] to the equations (0.6), (0.7), (0.11) and using 

(0.8), (0.9), then applying Laplace transform as defined in Sneddon [17] to the equations in Marchi-Fasulo 

transform domain and then using inversion of Laplace transform as defined in Sneddon [17] and Marchi-Fasulo 

transform as defined in [4] respectively, one obtain the expression for temperature function ( , , )T r z t
 
as 

  
  2 2 '0

'
1 1 1 1 0

( ) ( )2
( , , ) , ' '

( ) ( )

m n

t
a t tn m m

n mn m m m

P z J rk
T r z t f n t e dt

J c J

 

      

 
  

 




     (0.12) 

where m, n are positive integers, 
m are the positive roots of the transcendental equation  

 
0 ( ) 0mJ a    (0.13) 

2 ( )

h

n n

h

P z dz


   and ( , ) ( , ) ( )

h

n

h

f n t f z t P z dz
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   1 2 1 2cos( ) sin( )n n n nQ a a h a h        

   1 2 2 1cos( ) sin( )n n n nW a h a a h        

equation (0.12) is the desired solution of equation (0.6) with 
1 2 1 11, k      and 

2 2k   . 

3.2 Determination of Unknown Temperature Function 

Using (0.12)in (0.8) once obtain the unknown temperature function ( , )g z t  as  
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equation (0.14) is the desired solution of equation (0.8) with 
1 2 1 11, k      and

2 2k   . 

3.3 Determination of Quasi-Static Thermal Deflection Function 

Using (0.12) in equation (0.3) , we obtain  
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Assume the solution of (0.1) satisfying the (0.5) as  
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Using the (0.15), (0.16) and the result  
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in (0.1), once we obtain the expression for ( )nC t as  
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Substituting the equation (0.17) in the equation (0.16), once obtain the expression for thermal deflection 

function as  
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IV. PARTICULAR CASE AND NUMERICAL OUTCOMES 

For particular case of a circular plate. 

Assume that   

     
2 2

( , ) 1 tf z t e z h z h       (0.19) 

Applying finite Marchi-Fasulo transform as define in [3] to the equations (0.19), one obtain,  
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Now using (0.20), we obtain the necessary integral bellow  
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 For numerical result we set 
1 2 1, 1 , 0.5 , 1, 0.1k k a m m c h m       in equations (0.12), (0.18) and once 

making use of integral in (0.21) and obtain the numerical results for temperature and thermal deflection using 

MathCAD 2007 and depicted graphically using Microsoft office Excel 2010 as in Fig.1- Fig.2

 

 
Fig.1 Temperature field 

 
Fig. 2 Quasi-static thermal deflection 

 

 

V. CONCLUSIONS 

This article investigates the temperature, unknown temperature at lower surface and quasi-static 

thermal deflection due to unknown temperature. First, the mathematical model is constructed, and then the 

series solutions are obtained in terms of Bessel's function in the form of Marchi-Fasulo transform series by 

using integral transform methods. . The series solution converges provided we take sufficient number of terms 

in the series. Since the thickness of the plate is very small, the series solution given here will be definitely 

convergent. 

As a particular case and numerical outcomes the functions and parameters are consider and the 

temperature, unknown temperature and quasi-static thermal deflection determine by using MathCAD software 

and illustrated graphically by using Microsoft office excel 2010. This type of inverse problems has the many 

applications in engineering such as main shaft of a lathe machine and aircraft structure. The results obtained 

here are mainly useful in the determination of state of strain in a circular plate. 
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