Spectral and Transmittance properties of Ho³⁺ ions doped Zinc LithiumLead Calcium Borophosphate Glasses

S.L.Meena

CeramicLaboratory, Department of physics, Jai NarainVyas University, Jodhpur 342001(Raj.) India

Abstract

Glass of the system: $(40-x)P_2O_5$: 10ZnO: $10Li_2O$: 10PbO: 10CaO: $20B_2O_3$: xHo_2O_3 . (where x=1, 1.5, 2 mol %) have been prepared by melt-quenching method. The amorphous nature of the prepared glasssamples was confirmed by X-ray diffraction. Optical absorption, Excitation, fluorescence and Transmittance spectra were recorded at roomtemperature for all glass samples. Judd-Ofeltintensity parameters Ω_{λ} ($\lambda=2$, 4 and 6) are evaluated from theintensities of various absorption bands of optical absorption spectra. Using these intensity parameters various radiative properties like spontaneous emission probability (A), branching ratio (β), radiative life time(τ_R) and stimulated emission cross-section(σ_p) of various emission lines have been evaluated.

Keywords: ZLLCBP Glasses, Optical Properties, Judd-Ofelt Theory, Transmittance Properties.

Date of Submission: 05-09-2021

Date of Acceptance: 15-09-2021

I. INTRODUCTION

Glass materials doped with rare earth ions are widely used mainly for near-infrared solid-state lasers, sensors, infrared detectors, up-conversion lasers[1-5]. Some of the most popular applications of luminescence materials are solid light lasers, white light-emitting diodes (WLEDs) and plasma display panels (PDP)[6-9]. Phosphate glasses are known as attractive host materials for rare earth ions with application in photonic, visible and infrared solid state lasers, wave guides and display devices. Phosphate Glasses are both scientifically and technologically important materials because they generally offer some unique physical properties better than other Glasses [10-17]. Borophosphate glass systems exhibit high refractive indices, high gain density, high solubility and non-linear optical susceptibilities. They present superior properties that include high transparency, low melting point, high thermal stability and high solubility for rare-earth ions and low dispersion [18-21]. Among different rare-earth ions, the Ho³⁺ions have been identified as the most efficient ion for obtaining the lasing action, frequency up-conversion and optical amplification [22-24].

The present work reports on the preparation and characterization of rare earth doped heavy metal oxide (HMO) glass systems for lasing materials. I have studied on the absorption, excitation and emission properties of Ho³⁺doped zinc lithium lead calcium borophosphateglasses. The intensities of the transitions for the rare earth ions have been estimated successfully using the Judd-Ofelt theory, The laser parameters such as radiative probabilities(A), branching ratio (β), radiative life time(τ_R) and stimulated emission cross section(σ_p) are evaluated using J.O.intensity parameters($\Omega_{\lambda}, \lambda=2,4$ and 6).

Preparation of glasses

II. EXPERIMENTAL TECHNIQUES

The following $Ho^{3+}doped$ borophosphateglass samples (40-x)P₂O₅:10ZnO:10Li₂O:10PbO:10CaO:20B₂O₃:xHo₂O₃ (where x=1,1.5 and 2 mol%) have been prepared by melt-quenching method. Analytical reagent grade chemical used in the present study consist of P₂O₅,ZnO, Li₂O, PbO,CaO,B₂O₃ and Ho₂O₃. They were thoroughly mixed by using an agate pestle mortar. then melted at 1045^oC by an electrical muffle furnace for 2h., After complete melting, the melts were quickly poured in to a preheated stainless steel mould and annealed at temperature of 250^oC for 2h to remove thermal strains and stresses. Every time fine powder of cerium oxide was used for polishing the samples. The glass samples so prepared were of good optical quality and were transparent. The chemical compositions of the glasses with the name of samples are summarized in **Table 1**.

Table 1.

ZLLCBP (UD) -Represents undopedZinc Lithium Lead Calcium Borophosphate glass specimen. ZLLCBP(HO)-Represents Ho³⁺dopedZinc Lithium Lead Calcium Borophosphateglass specimens.

III. THEORY

3.1Oscillator Strength

The intensity of spectral lines are expressed in terms of oscillator strengths using the relation [25].

$$f_{\text{expt.}} = 4.318 \times 10^{-9} \text{J}\varepsilon (v) \, \text{d}v$$
 (1)

where, $\varepsilon(v)$ is molar absorption coefficient at a given energy v (cm⁻¹), to be evaluated from Beer–Lambert law. Under Gaussian Approximation, using Beer–Lambert law, the observed oscillator strengths of the absorption bands have been experimentally calculated [26], using the modified relation:

$$P_{\rm m}=4.6\times10^{-9}\times\frac{1}{cl}\log\frac{I_0}{I}\times\Delta\upsilon_{1/2}(2)$$

where c is the molar concentration of the absorbing ion per unit volume, I is the optical path length, $logI_0/I$ is optical density and $\Delta v_{1/2}$ is half band width.

3.2. Judd-Ofelt Intensity Parameters

According to Judd[27] and Ofelt[28] theory, independently derived expression for the oscillator strength of the induced forced electric dipole transitions between an initial J manifold $|4f^N(S, L) J\rangle$ level and the terminal J' manifold $|4f^N(S',L') J\rangle$ is given by:

(3)

$$\frac{8\Pi^2 m c \bar{\upsilon}}{3h(2J+1)} \frac{1}{n} \left[\frac{\left(n^2+2\right)^2}{9} \right] \times S(J,J^{-})$$

Where, the line strength S (J, J') is given by the equation S (J, J') = $e^2 \sum \Omega_{\lambda} < 4f^{N}(S, L) J \| U^{(\lambda)} \| 4f^{N}(S', L')J' > 2$ (4) $\lambda = 2, 4, 6$

In the above equation m is the mass of an electron, c is the velocity of light, v is the wave number of the transition, h is Planck's constant, n is the refractive index, J and J' are the total angular momentum of the initial and final level respectively, Ω_{λ} (λ =2,4and 6) are known as Judd-Ofelt intensity.

3.3Radiative Properties

The Ω_{λ} parameters obtained using the absorption spectral results have been used to predict radiative properties such as spontaneous emission probability (A) and radiative life time (τ_R), and laser parameters like fluorescence branching ratio(β_R) and stimulated emission cross section (σ_p).

The spontaneous emission probability from initial manifold $|4f^{N}(S', L') J'>$ to a final manifold $|4f^{N}(S,L) J>|$ is given by:

$$A[(S', L') J'; (S,L)J] = \frac{64 \pi^2 \nu^3}{3h(2J'+1)} \left[\frac{n(n^2+2)^2}{9} \right] \times S(J', \bar{J})$$
(5)

Where, S (J', J) = $e^2 \left[\Omega_2 \| U^{(2)} \|^2 + \Omega_4 \| U^{(4)} \|^2 + \Omega_6 \| U^{(6)} \|^2 \right]$

The fluorescence branching ratio for the transitions originating from a specific initial manifold $|4f^{N}(S', L') J\rangle$ to a final many fold $|4f^{N}(S,L)J\rangle$ is given by

$$\beta [(S', L') J'; (S, L) J] = \sum_{A[(S' L)]}^{A[(S' L)]}$$
(6)

SLJ

where, the sum is over all terminal manifolds.

The radiative life time is given by

$$\tau_{rad} = \sum A[(S', L') J'; (S,L)] = A_{Total}^{-1}(7)$$

S L J

where, the sum is over all possible terminal manifolds. The stimulated emission cross -section for a transition from an initial manifold $|4f^N(S', L')J\rangle$ to a final manifold

$$|4f^{N}(S,L)J\rangle|$$
 is expressed as

$$\sigma_p(\lambda_p) = \left[\frac{\lambda_p^4}{8\pi c \, n^2 \Delta \lambda_{eff}}\right] \times A[(S', L')J'; (\bar{S}, \bar{L})\bar{J}]$$
(8)

where, λ_p the peak fluorescence wavelength of the emission band and $\Delta \lambda_{eff}$ is the effective fluorescence line width.

3.4 Nephelauxetic Ratio (β ') and Bonding Parameter ($b^{1/2}$)

The nature of the R-O bond is known by the Nephelauxetic Ratio (β) and Bonding Parameters ($b^{1/2}$), which are computed by using following formulae [29, 30]. The Nephelauxetic Ratio is given by $\beta' = \frac{v_g}{v_a}(9)$

where, v_a and v_g refer to the energies of the corresponding transition in the glass and free ion, respectively. The value of bonding parameter ($b^{1/2}$) is given by

$$b^{1/2} = \left[\frac{1-\beta'}{2}\right]^{1/2} \tag{10}$$

IV. RESULT AND DISCUSSION

4.1XRD Measurement

Figure 1 presents the XRD pattern of the sample contain $-P_2O_5$ which is show no

sharp Bragg's peak, but only a broad diffuse hump around low angle region. This is the clear indication of amorphous nature within the resolution limit of XRD instrument.

Fig. 1 X-ray diffraction pattern of P₂O₅:ZnO:Li₂O:PbO:CaO:B₂O₃:Ho₂O₃

4.2Transmittance Spectrum

The Transmittance spectrum of Ho^{3+} doped in zinc lithium lead calcium borophosphateglass is shown in Figure 2.

Fig. (2) Transmittance spectrum of Ho³⁺doped ZLLCBPglasses.

4.3 Absorption Spectrum

The absorption spectra of Ho^{3+} doped ZLLCBP glass specimens have been presented in Figure 3 in terms of optical density versus wavelength. Twelve absorption bands have been observed from the ground state ${}^{5}\text{I}_{8}$ to excited states ${}^{5}\text{I}_{5}$, ${}^{5}\text{I}_{4}$, ${}^{5}\text{F}_{5}$, ${}^{5}\text{F}_{4}$, ${}^{5}\text{F}_{3}$, ${}^{3}\text{K}_{8}$, ${}^{5}\text{G}_{6}$, $({}^{5}\text{G}_{,3}\text{G}_{5}$, ${}^{5}\text{G}_{3}$, and ${}^{3}\text{F}_{4}$ for Ho^{3+} doped ZLLCBP glasses.

Fig. (3) Absorption spectrum of Ho³⁺doped ZLLCBPglasses.

The experimental and calculated oscillator strength for Ho³⁺ions in ZLLCBP glasses are given in **Table 2.**

Table 2:Measured and calculated oscillator strength ($P_m \times 10^{+6}$) of Ho ³⁺ ions in ZLLCBP glasses.									
Energy level from	y level from Glass				Glass	Glass			
⁵ I ₈	ZLLCBP(H	ZLLCBP(HO01)		(01.5)	ZLLCBP(HO02)			
	Pexp.	P _{cal} .	Pexp.	P _{cal} .	Pexp.	P _{cal} .			
⁵ I ₅	0.43	0.24	0.38	0.24	0.32	0.24			
⁵ I ₄	0.05	0.02	0.04	0.02	0.02	0.02			
⁵ F ₅	3.68	2.81	3.62	2.80	3.58	2.77			
⁵ F ₄	4.69	4.36	4.64	4.34	4.57	4.30			
⁵ F ₃	1.56	2.42	1.52	2.41	1.48	2.39			
${}^{3}K_{8}$	1.42	1.97	1.38	1.96	1.32	1.93			
${}^{5}G_{6}$	24.25	24.25	23.98	24.01	22.86	22.94			
(⁵ G, ³ G) ₅	3.85	1.71	3.79	1.71	3.68	1.67			
${}^{5}G_{4}$	0.07	0.61	0.05	0.60	0.04	0.59			
⁵ G ₂	5.68	5.21	5.61	5.16	5.57	4.96			
⁵ G ₃	1.48	1.38	1.42	1.37	1.38	1.35			
${}^{3}F_{4}$	1.36	4.19	1.34	4.18	1.29	4.11			
r.m.s. deviation	±1.1204		±1.1115		±1.1027				

Computed values of F₂, Lande' parameter (ξ_{4f}), Nephlauxetic ratio(β ') and bonding parameter($b^{1/2}$) for Ho³⁺ions in ZLLCBP glass specimen are given in Table 3.

Table 3: $F_{2}\xi_{4f}\beta'$ and $b^{1/2}$ parameters for Holmium doped glass specime	en.
--	-----

Glass Specimen	F_2	ξ _{4f}	β'	b ^{1/2}
Ho ³⁺	358.82	1258.16	0.9337	0.1821

In the Zinc Lithium Lead Calcium Borophosphateglasses (ZLLCBP) Ω_2 , Ω_4 and Ω_6 parameters decrease with the increase of x from 1 to 2 mol%. The order of magnitude of Judd-Ofelt intensity parameters is $\Omega_2 > \Omega_6 > \Omega_4$ for all the glass specimens. The high values obtained for Ω_2 in all glasses indicate that the Ho³⁺ ion is subjected to higher covalency with low symmetry. The spectroscopic quality factor (Ω_4/Ω_6) related with the rigidity of the glass system has been found to lie between 0.6072 and 0.6152 in the present glasses. The values of Judd-Ofelt intensity parameters are given in **Table 4**.

Glass Specimen	$\Omega_2(pm^2)$	$\Omega_4(\text{pm}^2)$	$\Omega_6(\text{pm}^2)$	Ω_4/Ω_6	Ref.
ZLLCBP (HO01)	5.840	1.353	2.212	0.6117	P.W.
ZLLCBP (HO1.5)	5.768	1.351	2.196	0.6152	P.W.
ZLLCBP (HO02)	5.462	1.322	2.177	0.6072	P.W.
PHOSPHATE	6.28	1.03	1.39	0.7410	[31]
LBTAF	13.23	1.23	2.96	0.4155	[32]

Table4:Judd-Ofelt intensity parameters for Ho³⁺ doped ZLLCBP glass specimens.

4.4Excitation Spectrum

The Excitation spectra of Ho^{3+} doped ZLLCBP glass specimens have been presented in Figure 4 in terms of Excitation Intensity versus wavelength. The excitation spectrum was recorded in the spectral region 325–525 nm fluorescence at 545nm having different excitation band centered at 349,419, 452, 473 and 486 nmare attributed to the ${}^{5}\text{G}_{3}$, ${}^{3}\text{G}_{5}$, ${}^{3}\text{G}_{6}$, ${}^{3}\text{K}_{8}$ and ${}^{5}\text{F}_{3}$ transitions, respectively. The highest absorption level is ${}^{5}\text{G}_{6}$ and is at 450nm. So this is to be chosen for excitation wavelength.

Fig. (4) Excitation spectrum of doped with Ho³⁺ZLLCBP glasses.

4.5 Fluorescence Spectrum

The fluorescence spectrum of Ho^{3+} doped in zinc lithium lead calcium borophosphateglass is shown in Figure 5. There are nine broad bands observed in the Fluorescence spectrum of Ho^{3+} doped zinc lithium lead calcium borophosphateglass. The wavelengths of these bands along with their assignments are given in Table 5. The peak with maximum emission intensity appears at 555nm and corresponds to the (${}^{5}F_{4} \rightarrow {}^{5}I_{8}$) transition.

Spectral and Transmittance properties of Ho³⁺ ions doped Zinc..

Fig. (5). Fluorescence spectrum of doped with Ho³⁺ZLLCBPglasses

Table5:Emission peak wave lengths (λ_p),radiative transition probability (A_{rad}),branching ratio (β),stimulated emission cross-section(σ_p) and radiative life time(τ_R) for various transitions in Ho³⁺ doped ZLLCBP glasses.

							0							
Transition		ZLLCBP (HO 01)					ZLLCBP (HO 1.5)				ZLLCBP (HO 02)			
	λmax (nm)	A _{rad} (s ⁻¹)	β	(10 ⁻²⁰ cm ²)	τ _R (μs)	A _{rad} (s ⁻¹)	β	(10^{-20})	τ _R (μs)	A _{rad} (s ⁻¹)	β	σ _p (10 ⁻²⁰ cm ²)	τ _R (10 ⁻²⁰ cm ²)	
⁵ F ₃ → ⁵ I ₈	435	4197.35	0.2501	0.598		4175.28	0.2499	0.584		4158.50	0.2504	0.566		
⁵ F ₄ → ⁵ I ₈	501	6667.63	0.3973	1.239		6638.44	0.3973	1.217	1	6595.58	0.3971	1.184	1	
⁵ S ₂ → ⁵ I ₈	555	1752.29	0.1044	0.433	1	1744.02	0.1044	0.426	1	1735.81	0.1045	0.416	1	
⁵ F ₅ → ⁵ I ₈	652	1897.58	0.1131	0.745		1891.48	0.1132	0.732		1875.78	0.1129	0.717		
${}^{5}S_{2} \rightarrow {}^{5}I_{7}$	761	1330.06	0.0792	1.137	5958.01	1323.06	0.0792	1.123	5985.33	1316.84	0.0793	1.104	6020.69	
⁵ F ₅ → ⁵ I ₇	995	440.55	0.0262	1.205]	438.91	0.0263	1.185		433.58	0.0261	1.155	1	
⁵ I ₆ → ⁵ I ₈	1032	203.89	0.0121	0.705]	203.06	0.0122	0.692		201.86	0.0122	0.677]	
⁵ S ₂ → ⁵ I ₅	1195	232.65	0.0139	1.222]	231.44	0.0139	1.201]	229.94	0.0138	1.172]	
⁵ S ₂ → ⁵ I ₆	1310	62.14	0.0037	0.631]	61.83	0.0037	0.618		61.50	0.0037	0.600	1	

V. CONCLUSION

In the present study, the glass samples of composition (40-x)P₂O₅:10ZnO:10Li₂O:10PbO:10CaO:20B₂O₃:xHo₂O₃ (where x =1, 1.5and 2mol %) have been prepared by melt-quenching method. The value of stimulated emission cross-section (σ_p) is found to be maximum for the transition (${}^{5}F_{4}\rightarrow {}^{5}I_{8}$) for glass ZLLCBP(HO 01), suggesting that glass ZLLCBP (HO 01) is better compared to the other two glass systems ZLLCBP (HO1.5) and ZLLCBP(HO02).On the basis of spectrophotometric, transmittance reaches about 86% for all phosphate glasses doped with Ho³⁺ ions.

REFERENCES

- Deopa,Nisha,Rao, A. S., Gupta, M. and Vijay Prakash, G. (2018). Spectroscopic investigation of Nd³⁺doped lithium lead Alumino Borate glasses for 1.06 μm laser Applications, Optical materials 75, 127-134.
- [2]. Kaur, A., Khanna, A. and Aleksandrov, L.I. (2017). Structural, thermal, optical and photo luminescent properties of barium tellurite glasses doped with rare earth ions, Journal of Non-Crystalline Sollids 476,67-74.
- [3]. Mohan Babu, A.,Jamalaiah, B. C., Suresh Kumar, J.,Sasikala,T.and Rama Moorthy, L. (2011). Spectroscopic and photoluminescence properties of Dy³⁺ doped lead tungsten tellurite glasses for laser materials, Journal of Alloys and Compounds 509,457-462.
- M.Hongisto, Vebar, A., Botti, N.G., Danto, S., Jubera, V.and Petita, L. (2020). Transparent Yb³⁺ doped phosphate glass ceramics, Ceremics International 46(16), 26317-26325.
- [5]. Meena,S.L.(2017).Polarizability and optical Basicity of Dy³⁺ ions doped yttrium Zinc lithium Bismuth Borate Glasses, Journal of pure Applied and Industrial physics.J.Pure and App.Ind.Phy., 7,310-318.
- [6]. Stambouli, W., Elhonichet, H., Gelloz, B. and Ferid, M. (2013). Optical and spectroscopic properties of Eu³⁺ doped tellurite glasses and glass ceremics, Journal of luminescence 138,201-208.
- [7]. Nasser,K.,Aseev, V., Ivanov, S.,Ignatiev, A.andNikonorov, N.(2019). Optical spectroscopic properties and Judd-ofelt analysis of Nd³⁺ doped photo thermo refractive glass, Journal of luminescence 213,255-262.
- [8]. Ramteke, D. D.andGedam, R.S.(2015). Spectroscopic properties of dysprosium oxide containing lithium borate glasses, Spectroscopy letters 48(6), 417-421.
- [9]. Vighnesh,K.R.,Ramya, B.,Nimitha, S.,Wagh, A.,Sayyed,M.I.,Sakar, E.,Yakout, H.A.andDahshan, A.(2020). Structural, optical, thermal, mechanical, morphological and radiation shielding parameters of Pr³⁺doped ZAIFB glass systems, Optical materials 99,109512.
- [10]. Devangad, P., Unnikrishnan, V.K., Nayak, R., Tamboli, M.M., Shameem, K.M. M., Santosh, C., Kumar, G.A. and Sardar, D.K. (2016). Performance evaluation of laser induced breakdown spectroscopy (LIBS) for quantitative analysis of rare earth elements in phosphate glasses, Optical materials volume 52, 32-37.

- Rai, V.N., Raja Sekhar, B.N., Kher, S.andDeb, S.K. (2010). Effect of gamma ray irradiation on optical properties of Nd doped [11]. phosphate glass, Journal of luminescence, 582-586.
- Zhang L., Xia, Y., Shen, X. and Wei, W. (2019). Concentration dependence of visible luminescence from Pr^{3+} doped phosphate [12]. Glass, Molecular and Biomolecular spectroscopy 454-459.
- Seshadri, M., Radha, M., Bell, M.J.V. and Anjos, V. (2018). Structural and spectroscopic properties of Yb³⁺ doped porophoshate [13]. glasses for IR laser application" Ceramics International 20790-20797.
- Sharma,Y. K., Surana, S.S.L., Dubedi, R. P.andJoshi, V.(2005). Spectroscopic and radiative properties of Sm³⁺ doped zinc fluoride [14]. borophosphate glasses, Material Science and Engineering, 119,131-135. NayabRasool, S.K.,Rama Moorthy, L.andJayasankar, C.K.(2013).Spectroscopic investigation of Sm³⁺ doped phosphate based
- [15]. glasses for reddish orange emission, Optical Communication, 3115,156-165.
- Ratnakaram, V. C., Reddy Prasad, V., Babu, S. and Ravi kanthkumar, V. V. (2016). Luminescence performance of Eu³⁺ doped lead free zinc phosphate glasses for red emission, Bulletin of Materials Science 39, 1065-1072. [16].
- Kumar, K. A., Babu, S., Prasad, V. R., Damodaraiah, S. and Ratnakaram Y.C. (2017). Optical response and luminescence characteristics of Sm^{3+} and Tb^{3+}/Sm^{3+} co-doped potassium-fluoro-phosphate glasses for reddish-orange lighting [17]. applications. Materials Research Bulletin 90.31-40.
- Ouis, M. A., El-Batal H. A., Azooz, M. A. and AbdelghanyA. M.(2013). Characterization of WO³-doped borophosphate glasses by [18]. optical, IR and ESR spectroscopic techniques before and after subjecting to gamma irradiation. Indian Journal of Pure and Applied Physics, 51, 11-17.
- Karabulut, M., Popa, A., Borodi, G.and Stefan, R. (2015). An FTIR and ESR study of iron doped calcium borophosphate glass-[19]. ceramics. Journal of Molecular Structure, 1101, 170-175.
- Leow, T., Leong, P., Eeu, T., Ibrahim, Z. and Hussin, R. (2014). Study of structural and luminescence properties of lead lithium [20]. borophosphate glass system doped with Ti ions. SainsMalaysiana, 43, 929-934.
- Shailajha, S.,Geetha, K. and Vasantharani, P. (2016). Spectral studies on CuO in sodium-calcium borophosphateglasses. Bull. [21]. Mater. Sci., 39(4), 1001-1009.
- Hussain,N. S. andBuddhudu,S.(2006). Absorption and emission properties of Ho³⁺ doped lead-zinc-borate glasses. Thin Solid [22]. Films, 515, 318-325.
- Mahamuda,S.K.andPrakash.G. V.(2013). Visible Red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth [23]. Borate Glasses. Optical Materials, 36, 362-371.
- [24]. Gong, H., Yang, D., Zhao. D., Pun. E.Y.B.and Lin. H.(2010).Upconversion color tenability and white light generation in Tm³⁺/Ho³⁺/Yb³⁺ doped aluminum germanate glasses. Optical Materials, 32(4) 554–559.
- Gorller-Walrand, C. and Binnemans, K. (1988). Spectral Intensities of f-f Transition. In: Gshneidner Jr., K.A. and Eyring, L., Eds., [25]. Handbook on the Physics and Chemistry of Rare Earths, Vol. 25, Chap. 167, North-Holland, Amsterdam, 101.
- Sharma, Y.K., Surana, S.S.L. and Singh, R.K. (2009). Spectroscopic Investigations and Luminescence Spectra of Sm³⁺ Doped Soda [26]. Lime Silicate Glasses. Journal of Rare Earths, 27, 773.
- [27]. Judd, B.R. (1962). Optical Absorption Intensities of Rare Earth Ions. Physical Review, 127, 750.
- Ofelt, G.S. (1962). Intensities of Crystal Spectra of Rare Earth Ions. The Journal of Chemical Physics, 37, 511. [28].
- Sinha, S.P. (1983). Systematics and properties of lanthanides, Reidel, Dordrecht. [29].
- Krupke, W.F. (1974). IEEE J. Quantum Electron QE, 10,450. [30].
- Sarder, D.K., Gruber, B. and Zandi, et al. (2003). Judd-Ofelt analysis of the Er³⁺(4f¹¹) absorption intensities in phosphate [31]. glass:Er³⁺, Yb³⁺, J.Appl.Phys., 93, 2041-2046.
- Jamalaiah, B.C.,SureshKumar,J., Mohan Babu, A.,Sasikala,T. and Rama, M.L.(2009).Study on spectroscopic and fluorescence properties of Tb³⁺ doped LBTAF glasses. Phys B.,404,2020-4 [32].

------S.L.Meena. "Spectral and Transmittance properties of Ho3+ ions doped Zinc LithiumLead Calcium Borophosphate Glasses." International Journal of Engineering Science Invention (IJESI), Vol. 10(09), 2021, PP 50-56. Journal DOI- 10.35629/6734 _____