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ABSTRACT: To address the issue of stabilizing each gain in a PI (Proportional-Integral) controller, this 

paper propo-ses a Zeng’s stabilization rule (ZSR) based on a single speed factor and an ACPI (Auto-Coupling 

PI) control theory method.The core concept of this method is to incorporate the internal dynamics of a known or 

unknown nonlinear system and an external bounded disturbance into a total disturbance, thereby enabling the 

mapping of said nonlinear system onto a linear disturbance system. By applying PI control law, we establish a 

controlled error system that utilizes the total disturbance as excitation. To ensure optimal dynamic 

characteristics and robust stability of the controlled error system, we have designed PI stabilization rules and 

an ACPI control law based on a single speed factor, derived from the characteristic equation of the critical 

damping system. These methods are both practical and elegant, with significant scientific value and broad 

applications in the field of control engineering. 
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I. INTRODUCTION 
The fundamental principle of Proportional Integral (PI) control is to devise control strategies based on 

the deviation between the actual output value of controlled objects and the desired value (the control target). 

With proper regulation of PI gains, a stable closed-loop control system can effectively achieve its intended 

objective. As such, PI control methodology has been widely adopted [1]-[3]. So far, PI stabilization methods are 

mainly divided into two categories: classical stabilization methods for linear systems [1]-[3] and modern 

optimization methods for nonlinear systems [4]-[13]. Both classical stabilization methods and modern 

optimization techniques have consistently demonstrated the objective reality of poor gains robustness, which PI 

stabilization has always posed a formidable challenge in the realm of control engineering, significantly 

constraining the potential control capabilities of PI control theory.  
To address the issue of gain stabilization in PI controllers, Chinese scholar Professor Zeng Zhezhao has 

conducted extensive research [14],[15]. Through the analysis of the physical properties of PI control systems, he 

discovered that the dimensionless proportional gain makes PI controller can only provide the control force of the 

generalized displace-ment  to controlled system, while any first-order system requires the input control force 

of the generalized speed, and any second-order system requires the input control force of the generalized 

acceleration, and so on. It has been demonstrated that there exists a dimensional inconsistency in control force 

between a PI controller with dimensionless proportional gain  and any controlled system. Moreover, the 

independent proportional gain and integral gain of a PI controller ensure that the proportional control force and 

integral control force operate independently, resulting in an incongruous control mechanism during the process. 

In order to rectify the deficiencies of PI control theory, it is imperative to scientifically define the dimensional 

attribute of proportional gain and dispel the erroneous notion of dimensionless proportional gain and mutually 

independent gain. 

The main research contents of this paper are arranged as follows. Section II examines the physical 

characteristics and issues of PI control systems, scientifically defines the dimensional properties of proportional 

gain, and resolves the dimensional conflict between control force from PI controllers and input control force 

controlled systems. In Section III, the model of PI control system is established. Based on the characteristic 

equation of a critical damping system, Zeng's stabilization rule (ZSR) and ACPI control force model with a 

single speed factor are developed. The stabilization model of the speed factor is investigated and the robustness 

of the ACPI control system is analyzed. The efficacy and feasibility of ACPI control theory are validated 

through simulation experiments in Section IV. Section V is the conclusions. 
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II. PHYSICAL CHARACTERISTICS AND CHALLENGES OF  PI CONTROL SYSTEM 
 

For the purpose of analysis, it is assumed that both the expected output (𝑟) and actual output (𝑦 = 𝑥1) 

of the controlled system are physical variables of generalized displacement. Therefore, the tracking error (𝑒1 =

𝑟 − 𝑦) is also a physical variable of generalized displacement, while the integral of error (𝑒0 = ∫ 𝑒1𝑑𝜏
𝑡

0
) 

represents physical variable of generalized displacement∙second and differential of error (𝑒̇1 = 𝑟̇ − 𝑦̇) denotes 

physical variable of generalized speed.   

2.1 Physical Characteristics of the PI Controller 

The PI control force is defined as follows: 

 𝑏0𝑢 = 𝑘𝑝(𝑒1 + 𝑒0/𝑇𝑖) = 𝑘𝑝𝑒1 + 𝑘𝑖𝑒0                                                   (1) 

where, 𝑏0𝑢 represents the control force, the 𝑘𝑝  and 𝑘𝑖  corres-pond to the proportional gain and integral gain 

respectively. 𝑘𝑖 = 𝑘𝑝/𝑇𝑖 and 𝑇𝑖  is the integral time constant with dimension of second.  

Using a dimensionless proportional gain (𝑘𝑝) in PI controller ensures that the control force (𝑏0𝑢) only 

has the same dimensions as the generalized displacement, which is represented by each term in (𝑒1 + 𝑒0/𝑇𝑖). 

2.2 Physical Characteristics of the PI Controller 

Since PI controller is only suitable for controlling first-order systems, a first-order system is considered 

as follows.  

  {
𝑥̇1 = 𝑓(𝑥1, 𝜉) + 𝑏0(𝑑 + 𝑢)
𝑦 = 𝑥1                                   

                                                                  (2) 

where, 𝑢  and 𝑦  represent the input and output, 𝑥1  represents a state, 𝑓(𝑥1, 𝜉) represents known or unknown 

nonlinear model, 𝑏0 is the control coefficient, 𝜉 is the time-varying model parameter set, and 𝑑 is the external 

bounded disturbance. 

As 𝑦 represents a physical variable of generalized displacement, 𝑥̇1 represents a physical variable of 

generalized speed. In accordance with the principle of dimensional symmetry, the internal dynamics 𝑓(𝑥1, 𝜉), 

external disturbance (𝑏0𝑑), and input control force (𝑏0u) of the controlled system (2) are all physical variables of 

the generalized speed. 

2.3 Dimensional Conflict Issue in PI Control Systems 

According to the analysis in Section 2.1, using dimension-less proportional gain will ensure that the PI 

control force only has the same unit as the generalized displacement. However, based on the analysis in 

Section 2.2, there is a dimensional conflict between PI control force and input control force of any first-order 

system since it has unit of generalized speed. 

2.4 Incongruous Control Mechanism of PI Control Force 

Since 𝑘𝑝 and 𝑇𝑖  are two independent variables, there is uncertainty in the surface relation (𝑘𝑖 = 𝑘𝑝/𝑇𝑖) 

between 𝑘𝑝 and 𝑘𝑖, indicating that 𝑘𝑝 and 𝑘𝑖 are also objective independent variables. In the control process, the 

mutual independence of 𝑘𝑝 and 𝑘𝑖 causes the proportional control force (𝑘𝑝𝑒1) and integral control force (𝑘𝑖𝑒0) 

to be mutually independent as well, resulting in an uncoordinated PI control mechanism. 

2.5 The Concept of Resolving Dimensional Conflict and Incongruous Control Mechanism 

The analysis above demonstrates that the dimensionless proportional gain kp is the fundamental cause 

of dimensional inconsistency between PI controller and controlled system. Therefore, by defining the dimension 

of proportional gain as 1/s, the PI control force can possess the dimension of generalized speed and satisfy the 

dimensional requirement of input control force for any first-order system, thus resolving the issue of 

dimensional conflict in PI control systems. 

When the 𝑘𝑝 has a dimension of 1/s, it can be inferred from the 𝑘𝑖 = 𝑘𝑝/𝑇𝑖 that the 𝑘𝑖 has a dimension 

of 1/s2. If we define a speed factor 𝑧𝑐  with a dimension of 1/s, then 𝑘𝑝 ∝ 𝑧𝑐 , and 𝑘𝑖 ∝ 𝑧𝑐
2. The 𝑧𝑐  not only 

determines the dimensions of 𝑘𝑝 and 𝑘𝑖, resolving the dimension conflict problem in PI control systems, but 

also establishes an internal relationship (𝑘𝑖 ∝ 𝑘𝑝
2) between 𝑘𝑝 and 𝑘𝑖, solving the discordant control mechanism 

between 𝑘𝑝𝑒1 and 𝑘𝑖𝑒0. 

The aforementioned analysis demonstrates that the 𝑧𝑐  inherently links 𝑘𝑝𝑒1  and 𝑘𝑖𝑒0  to generate an 

auto-coupling proportional-integral (ACPI) control force, which possesses distinct physical significance. 

 

 



ACPI Control Theory 

DOI: 10.35629/6734-12073947                                       www.ijesi.org                                                    41 | Page 

III. ACPI CONTROL THEORY 

3.1 Model Mapping of Controlled System 

In order to facilitate analysis, the total disturbance is deno-ted as 𝑤 = 𝑓(𝑥1, 𝜉) + 𝑏0𝑑. Then, system (2) 

can be represen-ted as a linear disturbance system: 

  {
𝑥̇1 = 𝑤 + 𝑏0𝑢
𝑦 = 𝑥1             

                                                                                      (3) 

where, 𝑤 = 𝑓(𝑥1, 𝜉) + 𝑏0𝑑, and |𝑤| ≤ 𝜀0. 

An effective controller designed based on system (3) can be applied to effectively control system (2), 

as they are equivalent mappings of each other. 

3.2 PI Control System 

It can be derived from the system (3): 𝑒̇1 = 𝑟̇ − 𝑦̇ = 𝑟̇ − 𝑤 − 𝑏0𝑢 . Based on Equation (1), the PI 

control system can be established in the following manner: 

{
𝑒̇0 = 𝑒1                          
𝑒̇1 = 𝑤̂ − 𝑘𝑝𝑒1 − 𝑘𝑖𝑒0

                                                                         (4) 

where, 𝑤̂ = 𝑟̇ − 𝑤 represents the compound total disturbance, and |𝑤̂| ≤ 𝜀1。 

As the PI control system (4) is essentially an error system that responds to the compound total 

disturbance, it can be classified as a causal system. Based on 𝐸0(𝑠) = 𝑠−1𝐸1(𝑠), by applying Laplace transform 

to system (4), the PI control system can be represented in the complex frequency domain as follows: 

𝐸1(𝑠) =
𝑠

𝑠2+𝑘𝑝𝑠+𝑘𝑖
𝑊̂(𝑠)                                                                        (5) 

From system (5), the transfer function of the PI control system can be defined as follows: 

𝐻(𝑠) =
𝐸1(𝑠)

𝑊̂(𝑠)
=

𝑠

𝑠2+𝑘𝑝𝑠+𝑘𝑖
                                                                      (6) 

3.3 ACPI Control System 

To ensure the good robust stability and dynamic response characteristics of the PI control system (6), it 

is imperative to scientifically stabilize both 𝑘𝑝and 𝑘𝑖.  

As any critical damping system exhibits stable behavior and favorable dynamic response characteristics, 

it is desirable for the PI control system (6) to be a second-order critical damping system. To achieve this, its 

characteristic equation can be formulated as:  (s + zc)2 = s2 + 2zcs + zc
2.  

The stabilization rule proposed by Zeng (ZSR) based on system (6) can thus be formulated as follows: 

{
𝑘𝑖 = 𝑧𝑐

2  
𝑘𝑝 = 2𝑧𝑐

                                                                                             (7) 

where, 𝑧𝑐 represents the speed factor with a dimension of 1/s. 

𝑧𝑐-based ZSR (7) not only scientifically defines dimensions of the 𝑘𝑝 and 𝑘𝑖 , but also serves as an 

internal coupling factor between them. This theoretically ensures that the PI control system (6) is a critical 

damping system with excellent dynamic response characteristics and stability, thus making it an ACPI control 

system: 

𝐻(𝑠) =
𝐸1(𝑠)

𝑊̂(𝑠)
=

𝑠

(𝑠+𝑧𝑐)2                                                                           (8) 

As 𝑧𝑐  is solely associated with the dynamic speed of the controlled system rather than its dynamic 

model, it is theoretically ensured that the ACPI control system (8) remains stable and exhibits good model 

robustness when 𝑧𝑐 is greater than zero. The ZSR (7) and ACPI control system (8) based on 𝑧𝑐 represents a 

novel control theory, which is referred to as ACPI control theory.  

In accordance with the ZSR (7), the ACPI’s proportional and integral control forces can be derived as 

follows: 

{
𝑏0𝑢𝑝 = 2𝑧𝑐𝑒1

𝑏0𝑢𝑖 = 𝑧𝑐
2𝑒0   

                                                                                     (9) 

The control force of ACPI, as per formula (9), is: 

𝑏0𝑢 = 𝑏0(𝑢𝑝 + 𝑢𝑖) = 𝑧𝑐
2𝑒0 + 2𝑧𝑐𝑒1                                                 (10) 

Where, |𝑢| ≤ 𝑢𝑚, and 𝑢𝑚 is the maximum input amplitude of  the controlled system. 

The formula (10) implies that the ACPI control force increases with 𝑧𝑐, resulting in a stronger control 

ability for the first-order system (2) or (3).  

ACPI control theory is a model-independent method as  𝑧𝑐 solely relies on the dynamic speed of the 

controlled system, rather than its dynamic model. 
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3.4 Analysis of ACPI Control System 

Theorem 1. Assume that the combined total disturbance is bounded: |𝑤̂| ≤ 𝜀1, then the steady-state error of 

ACPI control system is bounded as well:|𝑒1(∞)| < 𝜀1/𝑧𝑐, and the system exhibits strong resilience to combined 

total disturbance. 

Proof: According to ACPI control system (8), its unit impulse response can be derived as follows: 

ℎ(𝑡) = ℎ̇1(𝑡) = (1 − 𝑧𝑐𝑡)𝑒−𝑧𝑐𝑡𝜀(𝑡)                                                    (11) 

where, ℎ1(𝑡) = 𝑡𝑒−𝑧𝑐𝑡𝜀(𝑡), and 𝜀(𝑡) represents a unit step function. 

 From system (8), the time domain model of tracking error can be written as: 

𝑒1(𝑡) = ℎ(𝑡) ∗ 𝑤̂(𝑡) = ∫ ℎ(𝜏)𝑤̂(𝑡 − 𝜏)𝑑𝜏
𝑡

0
                                        (12) 

when |𝑤̂| ≤ 𝜀1, and |𝑒1(𝑡)| ≤ 𝜀1 ∫ |ℎ(𝜏)|𝑑𝜏
𝑡

0
, then steady-state error can be expressed as: 

|𝑒1(∞)| ≤ 𝜀1 ∫ |ℎ(𝜏)|𝑑𝜏
∞

0
                                                                  (13) 

Based on formula (11), ℎ(𝑡) ≥ 0 for 0 < 𝑡 ≤ 1/𝑧𝑐, and  ℎ(𝑡) < 0 for 1/𝑧𝑐 < 𝑡 < ∞, hence, we have 

∫ |ℎ(𝜏)|𝑑𝜏
∞

0
= ∫ ℎ(𝜏)𝑑𝜏

1/𝑧𝑐

0
− ∫ ℎ(𝜏)𝑑𝜏

∞

1/𝑧𝑐
                                       (14) 

∵ ∫ ℎ(𝜏)𝑑𝜏
∞

0
= ∫ ℎ(𝜏)𝑑𝜏

1/𝑧𝑐

0
+ ∫ ℎ(𝜏)𝑑𝜏

∞

1/𝑧𝑐
= 𝐻(0) = 0, according to formula (14), it can be obtained that: 

∫ |ℎ(𝜏)|𝑑𝜏
∞

0
= 2 ∫ ℎ(𝜏)𝑑𝜏

1/𝑧𝑐

0
= 2ℎ1(1/𝑧𝑐) =

2

𝑒𝑧𝑐
<

1

𝑧𝑐
, where 𝑒 ≈ 2.718  is the Napierian base, put it into 

formula (13), the steady-state error is:|𝑒1(∞)| < 𝜀1/𝑧𝑐. Proof completed. 

From  proof of theorem 1, it is known that the steady-state error of ACPI control system is inversely 

proportional to the 𝑧𝑐 . Hence, increasing the value of the 𝑧𝑐  will improve the control accuracy  and anti-

disturbance robustness. 

3.5 Intrinsic Relationship between zc and Ti 

Given that ACPI comes from PI, hence, the 𝑧𝑐 of ACPI is intrinsically related to the  𝑇𝑖  of  PI. From 

𝑘𝑖 = 𝑘𝑝/𝑇𝑖 , and formula (7),  it can be obtained that: 𝑧𝑐 = 2/𝑇𝑖 . Since 𝑧𝑐 is only related to  𝑇𝑖  , and unrelated to 

the model of the controlled system, hence the ACPI control system (8) is a critical damping system that has 

good robust stability and dynamic responsiveness. Its physical significance is that the greater the value of 𝑧𝑐, the 

stronger the control force of ACPI becomes. As a result, the ability to control system (2) or (3) is enhanced, then 

steady-state control precision will be improved and anti-disturbance ability will be strengthened accordingly, 

and vice versa. However, discussing the value of 𝑧𝑐 in isolation from the controlled system holds no practical 

significance. The ACPI control theory aims to stabilize the 𝑧𝑐 by integrating the dynamic speed of system (2) or 

(3). 

3.6 External Relationship between zc and the Controlled System 

Let 𝜏0 and 2/𝜏0denote the characteristic time and the dynamic speed of the controlled system (2) or 

(3), respectively, in accordance with the 𝑧𝑐 = 2/𝑇𝑖 . The smaller 𝜏0 is, the faster system (2) or (3) operates; 

otherwise, it operates slower. To ensure sufficient control power for the ACPI controller over the controlled 

system (2) or (3), it is necessary to set 𝑧𝑐 greater than the 2/𝜏0 of the system (2) or (3), that is 

𝑧𝑐 = 2/𝑇𝑖 > 2/𝜏0                                                                               (15) 

Based on the inequality (15), set the speed factor of the ACPI as 𝑧𝑐 = 2𝛼/𝜏0, where1 < 𝛼 ≤ 10 represents 

acceleration factor. Set dynamic process time as 𝑡𝑟, and 𝑡𝑟 = 10𝜏0, then the stabilization model of the speed 

factor based on 𝑡𝑟 is: 

𝑧𝑐 = 20𝛼/𝑡𝑟                                                                                       (16) 

where, 1 < 𝛼 ≤ 10, and 𝑡𝑟 represents the dynamic process time of the controlled system. 

The formula (16) reflects the external relationship between the speed factor of ACPI controller and the 

dynamic process time of the controlled system(2). Its physical significance is that the dynamic speed of the 

controlled system gets faster, it is required to have a greater value of the speed factor in ACPI controller, so that 

the ACPI controller can have great enough control force on the controlled system. Since altering the value of 

speed factor can alter the control force of ACPI controller, it indicates that ACPI controller can control first-

order systems with various dynamic models. 

 

IV. SIMULATIONS 

4.1 Description of the Controlled Systems 

Two numerical simulation systems are given in this section to illustrate the effectiveness of the 

proposed ACPI control scheme.  
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System 1: Consider a nonlinear system as follows: 

  {
𝑥̇1 = 𝑠𝑖𝑛(𝑥1) + 𝑑 + 𝑢
𝑦 = 𝑥1                           

                                                                       (17) 

where, 𝑢 and 𝑦 represent the input and output, 𝑥1 represents  a state of system (17). 

Set 𝑤 = 𝑠𝑖𝑛(𝑥1) + 𝑑, then, System 1 can be represented as a linear disturbance system: 

  {
𝑥̇1 = 𝑤 + 𝑏0𝑢
𝑦 = 𝑥1             

                                                                                   (18) 

where, 𝑏0 = 1. 

System 2: Consider a non-affine nonlinear time-varying system as follows: 

{
𝑥̇1 = 𝑎1(𝑡)𝑠𝑖𝑛(𝑥1) + 𝑏1(𝑡)𝑢3 + 𝑏2(𝑡)𝑢2

+𝑢𝑠𝑖𝑛(𝑢) + 𝑑                           
𝑦 = 𝑥1                                                             

                                       (19) 

where, 𝑢 and 𝑦 represent the input and output, 𝑥1 represents  a state of system (18), 𝑎1(𝑡) = 1 + 0.1𝑠𝑖𝑛(2𝑡), 

𝑏1(𝑡) = 0.1 + 0.01𝑠𝑖𝑛(𝑡) , and 𝑏2(𝑡) = 0.5 + 0.05𝑐𝑜𝑠(𝑡)  are time-varying coefficients of system (18) 

respectively. 

Set 𝑤 = 𝑎1(𝑡)𝑠𝑖𝑛(𝑥1) + 𝑏1(𝑡)𝑢3 + 𝑏2(𝑡)𝑢2 + 𝑢𝑠𝑖𝑛(𝑢) + 𝑑 − 𝑏0𝑢, then, System 2 can be represented 

as a linear disturbance system: 

  {
𝑥̇1 = 𝑤 + 𝑏0𝑢
𝑦 = 𝑥1             

                                                                                 (20) 

where, 𝑏0 = 1. 

Despite the distinct dynamic characteristics of the two systems, they can be transformed into a unified 

form of linear disturbance system. 

Let the external disturbance of the two systems be as follows: 

𝑑 = {
1, 10𝑠 ≤ 12𝑠                 
0, 𝑡 < 10𝑠 𝑜𝑟 𝑡 > 12𝑠

                                                          (21) 

and the initial state of both systems is 𝑥1(0) = 0. 

4.2 ACPI Controller 

Set 𝑡𝑟 = 1s, and 𝛼 = 4, then, 𝑧𝑐 = 20𝛼/𝑡𝑟 = 80/s, and ACPI controller as follows: 

𝑢 = (𝑧𝑐
2𝑒0 + 2𝑧𝑐

2𝑒1)/𝑏0                                                                (22) 

where, 𝑏0 = 1, and 𝑧𝑐 = 80/s. 

4.3 Simulation Experiments 

Let the expected output of both systems be a unit step trajectory: 𝑟 = 1. Consider that the state output 

of any system is unlikely to undergo mutation, therefore, a well-planned transition process is implemented to 

achieve the desired output by means of a low-pass filter as follows 

 𝐻(𝑠) = 1/(𝑇0𝑠 + 1)                                                                   (23) 

 
where 𝑇0 = 0.2𝑡𝑟 = 0.2s.  

Let the integral step be 0.001s. The following simulation experiments use ACPI controller with the 

same speed factor. 

Simulation 1: Unit step tracking  for System 1 

The unit step tracking control results for the System 1 are depicted in Fig.1.  

Fig. 1 demonstrates that ACPI control method achieves steady-state within 1.0 second, with a 

maximum steady-state error less than 1.0e-11 after 4 seconds. The restoration of the disturbed state to a steady-

state can be achieved within 0.1 seconds, as depicted in Fig. 1 (e). It shows that ACPI control system has strong 

anti-disturbance capability. 
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(a) Tracking trajectory 

 
 (b) Control input 

       
(c) Tracking error 

 
(d) Steady-state error 
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(e) Anti-disturbance result 

Fig.1 Control results for System 1 

 

Simulation 2: Unit step tracking  for System 2 

The unit step tracking control results for System 2 are depicted in Fig.2.  

Fig. 2 demonstrates that ACPI control method achieves steady-state within 1.0 second, with a 

maximum steady-state error less than 4.0e-5 after one second. The restoration of the disturbed state to a steady-

state can be achieved within 0.2 seconds, as depicted in Fig. 2 (e). It shows that ACPI control system has strong 

anti-disturbance capability. 
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(c) Tracking error 

 
(d) Steady-state error 

 
(e) Anti-disturbance result 

Fig.2 Control results for System 2 
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3) The ACPI control system  is a critically damped system that relies solely on the dynamic speed of the 

controlled system, rather than its dynamic model. Therefore, in theory, the model robustness and anti-

disturbance robustness of the ACPI control system are guaranteed. 

The scientific conclusion has been reached that the upper bound of steady-state error in an ACPI 

control system is inversely proportional to the 𝑧𝑐. The steady-state accuracy and anti-disturbance ability of the 

ACPI control system can be precisely controlled. 
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