
International Journal of Engineering and Science Invention (IJESI)  

ISSN (Online): 2319-6734, ISSN (Print): 2319-6726  

www.ijesi.org ||Volume 12 Issue 9 September 2023 || PP 33-37 

 

DOI: 10.35629/6734-12093337                                      www.ijesi.org                                                     33 | Page 

An arithmetic function and some proofs of infinitude of 

primes 
 

Samir Kumar Biswas 
 1

 Assistant Professor, Department of Mathematics 

Surendranath College, 24/2 M.G. Road Kol-09 

samir_biswas123@rediffmail.com 

 

ABSTRACT : In this paper  we intend to prove three different methods to establish the infinitude of prime 

numbers.  
KEYWORDS :  Prime number, Arithmetic function 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 06-09-2023                                                                           Date of Acceptance: 18-09-2023 

----------------------------------------------------------------------------------------------------------------------------- ----------   

 

I. INTRODUCTION  
In this article we are going to discuss three distinct, ingenious proofs to establish infinitude of primes. 

One has been done by using a special arithmetic function. In basic number theory the most fascinating question 

is how to establish the infinitude of primes. This question had been raised first by Euclid, way back in 300 BC. 

He showed that the number of primes is actually infinite. In the last twenty three centuries many 

Mathematicians provided different fascinating proofs to establish the infinitude of primes. Mathematicians are 

till now overwhelmed in the study of prime numbers to find new avenues to prove that the number of primes is 

actually infinite. In this article, we intend to discuss three completely different methods to establish the 

infinitude of prime numbers. 

There are several proofs. Some different approaches to prove were given by Euclid [4], Saidak [6]  and 

Goldbach. Here we establish three different proofs. 

 

We presume the following : ℕ=  the set of natural numbers,  P =  the set of primes,  gcd(a,b) =  the greatest 

common divisor of the positive integers a and b, Pn=  set of all primes dividing the natural number n, [x]= the 

greatest integer   x for all real number x.  

 

Some preliminary discussions regarding number theory are in order: 

The greatest common divisor or gcd of two positive integers a and b is defined to be the positive integer d which 

divides a and b and for any common divisor c of a and b, c divides d.  

 

A mapping   ℕ     is said to be multiplicative if for any m,n  ℕ with gcd(m,n) = 1,                 
The mapping   is said to be completely multiplicative if for any m,n ℕ,                 
The fundamental theorem of arithmetic states that every positive integer is either 1 or a prime or it can be 

expressed as a product of primes and the representation is unique up to the order of factors. 

 

For any two integers a and b and for any positive integer d if d।a and d।b, then d। (ax+by) for any two integers x 

and y.  

 

For any two natural numbers a,b and any prime p if p।ab, then either p।a or p।b. 

 

Any natural number n>1 has a prime factor. 

 

For all n ℕ a set S(n) is defined by  

S(n) =  {m ℕ: Pm Pn }, We say n generates the set S(n) or n generates the integers m, where Pm   Pn.  (1.1) 

Since P1 =   , S(1) = {1}.  

We define a mapping   ℕ    by 
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  which is a finite real number. Therefore the infinite series 

1

m nP P m

 is convergent for all n ℕ. Thus the mapping   ℕ     is well defined.  

  

                            

Theorem (1.1) : For any pP and any n ℕ,  ( ) ( )
1

n p
p p

p
  


. 

Proof: Clearly for any prime p and for any natural number n, ( ) ( )nS p S p . So ( ) ( )np p  . Now 

 2 3( ) 1, , , ,..........S p p p p  and hence 
2 3

1 1 1
( ) 1 ....................

1

p
p

p p p p
      


 

 Therefore ( ) ( )
1

n p
p p

p
  


 

 

Theorem (1.2) : For all m,n ℕ, Pm   Pn ( ) ( )m n    and Pm =  Pn ( ) ( )m n   . 

Proof: Obvious 

Theorem (1.3) :   is multiplicative and for all m,n ℕ, 
( ) ( )

( )
( )

m n
mn

d

 



 , where d = gcd(m,n) which 

implies that   is not completely multiplicative. 

Proof: ) Let m,n ℕ with gcd(m,n) = 1. Let 1 2

1 2 .......... k

km p p p
   and 1 2

1 2 .......... l

ln q q q
 

, 

 1 2, ,..........,m kP p p p  is a set of distinct primes and the integers i >0 for all i = 1,2,3,..........,k. Also 

 1 2, ,............,n lP q q q is a set of distinct primes and the integers j >0 for all j = 1,2,3,..........,l. Since 

gcd(m,n) = 1,    1 2 1 2, ,........, , ,............,k lp p p q q q  . 

Therefore 
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Hence the function   is multiplicative. 

Let gcd(m,n) = d and 1 2

1 2 ..... l

ld q q q
  . Also let 1 2 1 2

1 2 1 2...... .....k l

k lm p p p q q q
      and 
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     , , ,i j tp q r  are distinct primes and 1, 1, 1i j t      for all 

1 ,1 ,1i k j l t s      . 
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Thus the function   is not completely multiplicative. 

 

Theorem (1.4) : ( )
( )

n
n

n



  for all n ℕ, where   is Euler’s totient. 

 

Proof: Let 1 2

1 2 1 2.......... ; , ,......,k

k kn p p p p p p
  , are distinct primes and 1i   for all i = 

1,2,3,......,k. 

 
1 2

1 2

1 1

1
( ) ...........

1 1 1 1 1
1 1

k

k k
k

i ii i

pp p n n
n

p p p n
n

p p




 

   
      

    
   

 
 

 
Lemma (1.1): If 2,3,5,7,.......,p is the complete list of primes less than n(>3), then  2.3.5.7…….p>n. 

Proof: We shall prove the lemma by induction on n>3. For n = 4: 2, 3 are only primes less than 4 and 2.3 = 6 > 

4. So the result is true for n = 4. Let the result be true for n = m where m>3. Let 2,3,5,......, p be the complete list 

of primes less than m and 2.3.5……..p >m.  

We shall show that the result is true for n = m+1. 

Case1. Let m be a prime. 

Then 2,3,5,.......,p,m is the complete list of primes less than m+1.  

2.3.5………p>m. So  2.3.5……..p.m > m.m > m.3 = m+2m>m+1. 

 

Case2. Let m be a composite number. So m has a prime factor q in {2,3,5,..........,p} and 2,3,5,......,p is the 

complete list of primes less than m+1 since 2,3,5,......,p is the complete list of primes less than m. Now  

2.3.5………p>m 

 2.3.5……….pm+1 

If 2.3.5………..p = m+1, then q।(2.3.5……p) and q।m imply q।{(2.3.5…….p) - m}. Thus q।1 or, q = 1 which 

is a contradiction since q is a prime. Hence 2.3.5……….p > m+1. 

So in any case the result is true for n = m+1. Hence by induction the result is true for all n>3. 
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Theorem 1.5: For any n>1 there exists at least one prime between n and 2
n
. 

Proof: For all nN with n>1,  n = sum of reciprocals of all the natural numbers generated by n = sum of 

reciprocals of all natural numbers having prime factors in n. 

For any natural number n>1,  !n
 = 

( !)

1 1 1 1
1 ...............

2 3m S n m n

      

Let n be >7.  

               ! 2 3 5 7 11 13 .......n p       
 , where p is the largest prime dividing n!. 

Or,  
2 3 5 7 8 9 5

! . . . . . ........
2 1 3 1 5 1 7 1 8 1 9 1 1 8

n n
n

n
  
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But   2

1 1 1 1
2 ! 1 ...... ........ log 2

2 3 2
n

n n

nn
          where 

2n  is  Euler’s constant and  

0<
2n <1 for all nN. 

Hence   
5

2 ! log 2
8

n n
n   .  

Therefore,  

   2 ! !n n  . 

 So there exists at least one prime between n and 2
n
 when n>7. 

It is very obvious to check that the result is true for n = 2,3,4,5,6,7. 

Therefore the theorem is true for all n>1. 

Corollary (1.1): The number of primes is infinite. 

 

Alternative proof of infinitude of primes (1):   
Let n be any integer greater than 3. Let 2,3,5,7,........,p be the list of all primes less than n. By lemma (1.1) we 

have 2.3.5………..p > n. Hence all the primes less than n cannot be the factors of n. 

If n is a composite number, then each prime factor of n belongs to {2,3,5,...........,p}. Therefore  !n nP P

  i.e 

!n nP P  and !n nP P . 

If n be a prime then obviously !n nP P

  as n is one of the prime factors of n! for n>3.  

Thus  

      ! ( !)! ! ! ! ! ! ! !
...............n n n n n

P P P P P
    
      is a strictly ascending infinite sequence of sets of primes. 

Hence the number of primes is infinite.  

      

  Alternative proof of infinitude of primes (2): 

Let the number of primes be finite and 1 2, ,......, np p p  be the complete list of primes where pi, 

 (1 i n  ) be the i-th prime.  

Let  

1 2 1

1 1 1 1
........

n n

a

p p p p b
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where a,b are positive integers and gcd(a,b) = 1.  

Case1. If  p1, p2, p3, . ……………., pn are all in the factorization of b, then none of p1, p2, p3, .. ……………., pn 

can be a factor of a since gcd(a,b)  = 1. This implies that a =1 as p1, p2, p3, . ……………., pn is the complete list 

of primes. So  

1 2 1 1 2 1

1 1 1 1 1
........

.......n n n np p p p p p p p 
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. 

Obviously the above result is not true since  

1 2 1

1 1

.......i n np p p p p

 for all  i = 1,2,3,.......,n or , 

1 2 1 1 2 1
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Case2. If at least one of p1, p2, p3 , ……………., pn is not in the factorization of b, then let pi (1 i n  ) be not 

in the factorization of b.  

Then  1 2 1 1.... ......i i n

a
p p p p p

b
   

is an integer.  

Now 
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(1.3)
 

Now 

1 2 1 1.... ......i i n

j

p p p p p

p

 
   is an integer for all j = 1,2,3,...i-1,i+1,...n.  

Since p1, p2, p3 , ……………., pn is a list of distinct primes,
 

1 2 1 1.... ......i i n

i

p p p p p

p

    cannot be an integer. 

Therefore the left hand side of (1.3) is an integer whereas the right hand side is a rational fraction. 

 Thus we are at a contradiction. Hence the number of primes is infinite. 

 

Corollary (1.2)  : For any natural number n>2, there exists a prime between n  and  n!. 

Proof: Although it is an immediate consequence of Theorem (1.5) but one can prove this nice proven result by 

applying   function.  

Obviously the result is true for n = 3,4,5,6 and 7. For n 8,  ! 1n n   and 

  
1 1 1

! ! 1 .......... log !
2 3 !

n n
n

        

Now by Stirling’s formula 
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122! 2
nn
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
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 , where 0 1  .  

So 
21 1

log ! log 2 log log
2 12 2 12

n n n n n e n
n n

 


   
           

   
, since 

28n e  . 

Or, log ! 2 1
12

n n n n
n


     . 

Again  ! 1n n   and   ! !n n  imply there exists at least one prime between n and n!. 

It also proves that the number of primes is infinite. 

 
II. CONCLUSION 

There are many proofs of infinitude of primes. In most cases it is observed that the way of 

establishing  the infinitude of primes is to show that there exists  a prime greater than a given prime or greater 

than each of a given set of primes. Which imply that the number of primes is infinite. In the first proof it has 

also been done but a certain interval has been determined in which the next prime belongs. The basic fact that 

has been applied in the second proof is to show for any natural number n>3 the product of primes less than n is 

strictly greater than n which produces a simple infinite sequence of sets of primes.  
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