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Abstract: Two effective techniques for approximating data in all areas of engineering problems are the B-spline 

and Bezier methods. They can be used for data interpolation with a few tweaks and enhancements. Although 

there are various methods for formulating B-splines in the literature, the B-spline equation is defined by a set of 

independent functions. The number of pairs of data or control points is equal to the number of coefficients in the 

B-spline equation. The B-spline method's benefit is that most set functions decrease at specific control points. 

The governing parametric equations can be drawn to produce Bezier curves. Bernstein polynomials are the 

parametric equations. A Bezier curve passes through the end points but not all of the data points. It is typically 

used in approximation methods. The Bezier curve can be used for interpolation since it can be made to pass 

through every control point by taking into account a few complimentary points between the original locations. 

This procedure produces curves that are smoother and less sinuous. These two approaches handle a number of 

challenges for comparing the interpolation qualities. The findings demonstrate the strength and resilience of 

both approaches for interpolating a highly irregular data set. In terms of accuracy, smoothness, and less 

computations, the Bezier model outperforms B-splines.  
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I. Introduction 
Geometric modeling is crucial to fill the gap between computer science research and industry. It is 

important for both design and function in many fields, like aircraft, digital devices, cars, scientific and medical 

instruments, and home goods. This paper concentrates on Computer Aided Geometric Design (CAGD), a subset 

of Geometry, Numerical Analysis, Computer Graphics, and Approximation Theory. Curves and surfaces are 

important parts of CAGD. In computational graphics, representations of large data sets are also included in 

CAGD. B-splines, trigonometric splines, and Bezier methods are all techniques used to create smooth curves 

and surfaces in computer graphics, geometric modeling, and other fields. B-splines are piecewise polynomials 

that provide local control and smoothness, while trigonometric splines offer advantages for representing 

periodic shapes and curves. Bezier curves are a specific type of parametric curve defined by control points and 

Bernstein polynomials, and they can be used to create smooth curves and surfaces. The B-spline curves, 

particularly trigonometric B-spline curves, have attained remarkable significance in the field of Computer Aided 

Geometric Design (CAGD). Different researchers have developed different interpolants for shape designing 

using Ball, Bezier, and ordinary B-splines. Preserving geometrical shapes of a given data set is essential for 

geometric design. It has great significance in different areas such as curve design, approximation, interpolation 

and reverse engineering. The definition of interpolating curves or surfaces that may be efficiently employed in 

the manufacturing business is a significant difficulty in the CAD/CAM industry. For many other applications 

such as the trajectories of cars, the design of aeroplanes, ships, and machine components, particles etc. One 

might desire to design an interpolating curve that would represent the information accurately. In this way, shape 

preserving interpolation techniques are important. Interpolation does not preserve the shape inherently. But 

under certain constraints the shape is preserved. 

Piecewise polynomial functions have several important features. Specifically, due to their simplicity in 

representation, they provide a convenient way to define geometrical shapes. Further, the mathematical analysis 

of a geometrical shape is well understood by piecewise polynomial functions. Below a brief introduction to a 

special class of piecewise polynomial functions called classes of spline functions is given. 
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II. Splines 
In mathematics, functions serve as important tools to describe and analyze physical processes and 

phenomena in nature. However, the explicit representation of the functions modeling these phenomena is known 

only for a few cases. Most of the time, we need to deal with approximations based on known information. 

Therefore, one of the objectives of applied mathematics is to find such approximations. For example, fitting data 

problems arise in all areas of the natural sciences. Approximation theory studies various classes of 

approximating functions, while numerical analysis chooses and analyzes the actual algorithms of approximation. 

The use of classes of spline functions in recent years has proven to be very beneficial in both approximation 

theory and numerical analysis. Originally, the word spline refers to a flexible ruler that is used to draw curves, 

mainly in the aircraft and shipbuilding industries. Classes of spline functions are easy to assess. They possess 

structural properties as well as excellent approximation powers. 

Geometric modeling developed its roots in the era of Euclid and Descartes [1]. The manufacturing of 

curves dates to Roman times. It started with the purpose of shipbuilding, such as the ship’s rib. Later, in between 

the 13th to 16th centuries, the Venetians modernized this shipbuilding technique. The ship hull was constructed 

by changing the ribs along with the keel. Earlier, there was no definite sketch of a ship hull. The splines are 

wooden beams used to make smooth curves, known as classical splines. According to [1], the earliest work on 

splines is the nineteenth-century work of Lo- vachevsky, where the splines are constructed using convolution. In 

1944, Roy A. Liming proposed drafting methods and analysis with computational techniques in his book 

entitled Practical Analytic Geometry with aircraft applications. These methods helped in the designing and 

manufacturing of aircraft in World War II. Soon after, in 1946, Schoenberg [2] published a paper that marked as 

the beginning of the modern theory for spline approximations. Around 1960, De Castlejau and Bezier developed 

the subdivision algorithms for the Bernstein form of curves and surfaces. Particularly, the Bezier curve is a 

special parametric curve, based on a control polygon, and uses the Bernstein polynomial as a blending function. 

Since then, Bezier curves have formed the basis of CAGD. In 1972, De Boor, Cox and Mansfield discovered the 

recurrence relations for B-splines [3,4]. Lane and Riesenfield provided an important algorithm for B-splines in 

1980 [5]. The enormous literature published in the last few decades shows the significant application of the 

spline theory in large areas of modern numerical mathematics, such as CAGD, Numerical integration and 

differentiation, Data fitting, Interpolation and Approximation, Wavelets and Fractals. 

 
Fig 1: Spline Method Interpolation 

 

III. Interpolation And Approximation 
In computer graphics, we are concerned primarily with how the curve appears to a human observer and 

not with its mathematical properties. Our goal 4 is not to replace one curve by another, worrying about error 

estimates and other matters, as is done in mathematics. Rather, we want to create a curve that has a smooth look 

and satisfies our visual sense. To this end, the interpolation and approximation methods developed mainly in 

numerical analysis have proven to be a good tool. 

In interpolation, the curve goes precisely through the points, as shown in Figure 1. In approximation 

the curve does not necessarily go through the points; it goes near to, or approximates them, as in Figure 2. 
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Fig 2: Interpolating Curve 

 
Fig 3: Approximating Curve 

 

IV. Properties For Designing Curves 
The requirements of the user and the computer combine to suggest a number of properties that our 

representations must have. We list below some of the important properties for designing curves. The 

requirements for designing surfaces are very similar as we know that surfaces can be represented using simple 

extensions of techniques for representing curves. 

 

1- Spatial uniqueness 
 Two objects cannot occupy the same space at the same time. Objects shapes are expressed in a 

computer by data structures using numerical shape data and functions, but spatial uniqueness is very difficult to 

express. Therefore, a program is needed to test for overlap between positions of two bodies. 

 

2- Control points 
 A common way to control the shape of a curve interactively is to locate points through which the curve 

must pass or points that control the curve's shape in a predictable way. These points are called control points. A 

curve is said to interpolate the control points if it passes through them. 

 

3- Multiple values 
 In general, a curve is not a graph of a single-valued function of a coordinate, irrespective of the choice 

of coordinate system. So a curve can be multivalued with respect to all coordinate systems. 

 

4- Axis independence 
 The shape of an object must not change when the control points are measured in a different coordinate 

system. If for example, the control points are rotated 90 degrees, the curve should rotate 90 degrees but not 

change shape. Some mathematical formulations will cause a curve’s shape to change if the reference coordinate 

system is changed. 

 

5- Global or local control 
  As a designer manipulates a control point, a curve may change shape only in the region near the control 

point, or it may change shape throughout. This last behavior, called global control, may be annoying to the 

designer trying to make fine adjustments to just one portion of the curve. 
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6- Variation-diminishing property 

 Some mathematical representations have an annoying tendency to amplify, rather than smooth, any 

small irregularities in the shape outlined by control points. Others, possessing a variation diminishing property, 

always smooth the designer's control points.  

 

7- Versatility 
 A curve representation that allows only a limited variety of shapes may frustrate a designer. A 

framework that provides only arcs of circles, for example, lacks sufficient versatility to model most designs. 

More flexible techniques allow the designer to control the versatility of a curve representation, often by adding 

or removing control points. For example, a curve specified by two control points might be a straight line 

connecting the points, introducing a third control point allows the curve to take on a large number of additional 

shapes, depending on the location of the control point. 

 

V. B-Spline 
The term spline comes from engineering drawing, where a spline is a piece of flexible wood to draw 

smooth curves. A spline is a parametric curve defined by control points. The control points are adjusted by the 

user to control the shape of the curve. Two features of the Bezier or Bernstein basis function limit the flexibility 

of the resulting curves. Firstly, the number of control points defines the order of the resultant curve. Secondly, 

any point on the curve is a result of blending the values of all defining vertices, and hence any change of one 

vertex is felt throughout the entire curve. B-spline curves overcome these two important limitations of Bezier 

curves. Here (i) the order or degree of the curve is independent of the number of control points, and (ii) the 

control points have only local control over the shape of the spline or surface. 

The letter B in B-splines represents base or fundamental. B-splines are piecewise functions that exhibit 

global smoothness. Knots are real numbers that represent the components' meeting places. Define a partition or 

a non-decreasing series of knots as follows: 
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The B-spline basic function is constructed by the summation or linear combination of a series of B-spline basic 

functions that are linearly independent in the interval [a,b], as 
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B-spline basis is used to describe a B-spline curve, several additional properties are immediately known:  

1- Each basis function is positive or zero for all parameter values, i.e., Ni,k>0. 

2- Except for k=l each basis function has precisely one maximum value.   

3- The maximum order of the curve is equal to the number of defining polygon vertices.  

4- The maximum order of the curve is equal to the number of defining polygon vertices.  

5- The curve exhibits the variation diminishing property. Thus the curve does not oscillate about any straight 

line more than its defining polygon.  

6- The curve generally follows the shape of the defining polygon. 6- Any affine transformation can be applied 

to the curve by applying it to the defining polygon vertices (i.e., the curve is transformed by transforming the 

defining polygon vertices). 7- The curve lies within the convex hull of its defining polygon. 

Examples: We demonstrate different B-spline functions using MATHEMATICA. 

 

Example-1 

                       
Fig:4 Different types of B-spline function 
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Example 2:  

This transforms an image using a smooth vector field defined by a B-spline function 

 

                  
Fig:5 Transform Images Using B-Spline Functions 

 

VI. Bezier Curve 
Bezier curves can be defined by a recursive algorithm, which is how de Casteljau first developed them. 

It is also necessary, however, to have an explicit representation for them, i.e., to express a Bezier curve in terms 

of a non-recursive formula rather than an algorithm. Bezier curves have been employed in CAGD and many 

other fields, including [1,6,7,8]. The control points for each Bezier curve are unique, according to [9]. 

According to [10], the most prevalent topic of study in CAGD is the use of shape control parameters to generate 

Bezier curves. The Bezier curves are generalized into Generalized Bernstein-Bezier (GBB) curves in [11], 

which are also used for design purposes. Bernstein polynomials satisfy the recursion: 
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VII. The De Casteljau Algorithm 
Paul de Faget de Casteljau, born in 1830, is a French physicist and mathematician [13]. While working 

at Citroen in 1959, he discovered a recursive scheme for determining points on a certain set of curves, which 

was eventually codified and popularized by engineer Pierre Bezier. Within the last 20 years de Casteljau's 

algorithms became a fundamental tool in CAGD [12]. The de Casteljau algorithm may be used to recursively 

compute points on Bezier curves of any rank. It makes use of consecutive linear interpolations to arrive at a 

location on the target curve. For example, to assess a cubic Bezier curve at a given value, four control points 

must be defined, and the method must be repeated 3 times. De Casteljau’s algorithms have been a fundamental 

tool in CAGD during the last twenty years. His concept of control points provided an easy understanding of why 

control points are so powerful in vehicle and ship design, the aerospace industry, and medical and geological 

representations. 

  
 

Fig 6 Bernstein Polynomials      1 2 3,  , i i iB t B t B t  

 

VIII. Conclusion 
The Bezier and B-spline methods are effective for interpolation and approximation of data, particularly 

for data with uneven or nonuniform distribution. Both approaches can be used with varied element sizes. The B-

spline approach is more sensitive to abrupt changes in element size and unexpected shifts in data trends. As the 

element size deviates from uniformity, B-spline curves lose their smoother features. 
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