k - Symmetric Doubly Stochastic, s-Symmetric Doubly Stochastic and s-k - Symmetric Doubly Stochastic Matrices

${ }^{1}$,Dr. K. Gunasekaran , ${ }^{2,}$ Mrs. N. Mohana, Associate professor ${ }^{1}$
Assistant Professor ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, TamilNadu.
${ }^{2}$ Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, TamilNadu.

Abstract

The basic concepts and theorems of k-symmetric doubly stochastic s-symmetric doubly stochastic and s-k-symmetric doubly stochastic matrices are introduced with examples.

KEY WORDS: k-symmetric doubly stochastic matrix, s-symmetric doubly stochastic matrix and s - k-symmetric doubly stochastic matrix.

AMS CLASSIFICATIONS: 15A51, $15 B 99$

I. INTRODUCTION

We have already seen the concept of symmetric doubly stochastic matrices. In this paper the symmetric doubly stochastic matrix is developed in real matrices. Recently Hill and Waters[2] have developed a theory of k-real matrices as a generalization of s-real matrices. Ann Lee[1] has initiated the study of secondary symmetric matrices, that is matrices whose entries are symmetric about the secondary diagonal. Ann Lee[1] has shown that the matrix A, the usual transpose A^{T} and secondary transpose A^{S} are related as $A^{S}=V A^{T} V$ and A^{T} $=\mathrm{VA}^{\mathrm{s}} \mathrm{V}$ where V is a permutation matrix with units in the secondary diagonal.

II. PRELIMINARIES AND NOTATIONS

A^{T} - Transpose of A

Let k be a fixed product of disjoint transpositions in S_{n} and ' K ' be the permutation matrix associated with k. Clearly K satisfies the following properties. $K^{2}=I, K^{T}=K$.

III. DEFINITIONS AND THEOREMS

DEFINITION: 1

A matrix $\mathrm{A} \in \mathrm{R}^{\mathrm{nxn}}$ is said to be symmetric doubly stochastic matrix if $\mathrm{A}=\mathrm{A}^{\mathrm{T}}$ and

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i j}=1, \mathrm{j}=1,2, \ldots \ldots \ldots \mathrm{n} \\
& \text { and } \sum_{j=1}^{n} a_{i j}=1, \mathrm{i}=1,2, \ldots \ldots \ldots \mathrm{n} \text { and all } \mathrm{a}_{\mathrm{ij}} \geq 0 .
\end{aligned}
$$

If A is doubly stochastic and also symmetric then it is called a symmetric doubly stochastic matrix.

DEFINITION: 2

A matrix $A \in R^{n \times n}$ is said to be k-symmetric doubly stochastic matrix if $A=K A^{T} K$

THEOREM: 1

Let $A \in R^{n \times n}$ is k-symmetric doubly stochastic matrix then $A=K A^{T} K$.
Proof:

$$
\begin{aligned}
\mathrm{K} \mathrm{~A}^{\mathrm{T}} \mathrm{~K} & =\mathrm{KAK} \text { where } \mathrm{A}^{\mathrm{T}}=\mathrm{A} \\
& =A K K \text { where } \mathrm{AK}=\mathrm{KA} \\
& =\mathrm{AK}^{2}=\mathrm{A} \text { where } \mathrm{K}^{2}=\mathrm{I}
\end{aligned}
$$

THEOREM: 2
Let $A^{T} \in R^{n \times n}$ is k-symmetric doubly stochastic matrix then $A^{T}=K A K$.
Proof:

$$
\begin{aligned}
\text { K AK } & =K A^{T} K \text { where } A=A^{T} \\
& =A^{T} K K \text { where } K A^{T}=A^{T} K \\
& =A^{T} K^{2}=A^{T} \text { where } K^{2}=I
\end{aligned}
$$

THEOREM: 3

Let $A, B \in R^{n \times n}$ is k-symmetric doubly stochastic matrix then $\frac{1}{2}(A+B)$ is k-symmetric doubly stochastic matrix.

Proof:

Let A and B are k-symmetric doubly stochastic matrix if $A=K A^{T} K$ and $B=K B^{T} K$.
To prove $\frac{1}{2}(A+B)$ is k-symmetric doubly stochastic matrix we will show that

$$
\frac{1}{2}(\mathrm{~A}+\mathrm{B})=\mathrm{K} \frac{1}{2}(\mathrm{~A}+\mathrm{B})^{\mathrm{T}} \mathrm{~K}
$$

Now $\quad K \frac{1}{2}(A+B)^{T} K=K \frac{1}{2}\left(A^{T}+B^{T}\right) K=\frac{1}{2} K\left(A^{T}+B^{T}\right) K=\frac{1}{2}\left(K A^{T}+K B^{T}\right) K=\frac{1}{2}\left(K A^{T} K+K B{ }^{T} K\right)$

$$
=\frac{1}{2}(\mathrm{~A}+\mathrm{B}) \text { where } \mathrm{K} \mathrm{~A}^{\mathrm{T}} \mathrm{~K}=\mathrm{A} \text { and } \mathrm{KB}^{\mathrm{T}} \mathrm{~K}=\mathrm{B}
$$

THEOREM: 4

Any k-symmetric doubly stochastic matrix can be represent as sum of k -symmetric doubly stochastic matrix and skew k -symmetric doubly stochastic matrix.

Proof:

To prove that $\frac{1}{2}\left(A+K A^{T} K\right)$ and $\frac{1}{2}\left(A-K A^{T} K\right)$ are k-symmetric doubly stochastic matrices the we will show that $\frac{1}{2}\left(A+K A^{T} K\right)=K \frac{1}{2}\left(A+K A^{T} K\right)^{T} K$ and $\frac{1}{2}\left(A-K A^{T} K\right)=K \frac{1}{2}\left(A-K A^{T} K\right)^{T} K$.
$K \frac{1}{2}\left(A+K A^{T} K\right)^{T} K=\frac{1}{2}\left(A+K A^{T} K\right)$ using theorem 3 and $K \frac{1}{2}\left(A-K A^{T} K\right)^{T} K=\frac{1}{2}\left(A-K A^{T} K\right)$.
Then $\frac{1}{2}\left(A+K A^{T} K\right)+\frac{1}{2}\left(A-K A^{T} K\right)=2 A / 2=A$. Hence the theorem is proved.

THEOREM: 5

If A and B are k-symmetric doubly stochastic matrices then $A B$ is also k-symmetric doubly stochastic matrix.
Proof:
Let A and B are k-symmetric doubly stochastic matrix if $A=K A^{T} K$ and $B=K B^{T} K$.
Since A^{T} and B^{T} are also k-symmetric doubly stochastic matrices then $A^{T}=K A K$ and $B^{T}=K B K$.
To prove A B is k-symmetric doubly stochastic matrix we will show that

$$
\mathrm{AB}=\mathrm{K}(\mathrm{AB})^{\mathrm{T}} \mathrm{~K}
$$

Now $\quad K(A B)^{T} K=K B^{T} A^{T} K=K(K B K)(K A K) K$ where $A^{T}=K A K$ and $B^{T}=K B K$.

$$
\begin{aligned}
& =\mathrm{K}^{2} \mathrm{~B} \mathrm{~K}^{2} \mathrm{~A} \mathrm{~K}^{2}=\mathrm{BA} \text { where } \mathrm{K}^{2}=\mathrm{I} \\
& =\mathrm{AB} \text { where } \mathrm{BA}=\mathrm{AB}
\end{aligned}
$$

THEOREM: 6

If A and B are k-symmetric doubly stochastic matrices and K is the permutation matrix, $\mathrm{k}=\{(1),(23)\}$ then KA is also k -symmetric doubly stochastic matrix.

Proof:

Let A and B are k-symmetric doubly stochastic matrix if $A=K A^{T} K$ and $B=K B^{T} K$.
Since A^{T} and B^{T} are also k-symmetric doubly stochastic matrices then $A^{T}=K A K$ and $B^{T}=K B K$.
To prove $K B$ is K-symmetric doubly stochastic matrix we will show that $K A=K(K A)^{T} K$
Now $\quad K(K A)^{T} K=K\left(A^{T} K^{T}\right) K=K A^{T} K^{T} K=K A^{T}$ where $K^{T} K=I$.

$$
=\mathrm{KA} \text { where } \mathrm{KA}^{\mathrm{T}}=\mathrm{KA}
$$

RESULT:

For $A \in R^{n \times n}$ is symmetric doubly stochastic matrices for the following are holds.
[1] $A=K A^{T} K$
[2] KA is symmetric doubly stochastic matrix.
[3] AK is symmetric doubly stochastic matrix.

Example:

$$
\mathrm{A}=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right) \quad \mathrm{A}^{\mathrm{T}}=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right) \quad \text { and } \mathrm{k}=(1)\left(2 \begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(i) $\mathrm{KA}^{\mathrm{T}} \mathrm{K}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)=\mathrm{A}$
(ii) $K A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right)=(\mathrm{KA})^{\mathrm{T}}$
$\Rightarrow \mathrm{KA}$ is symmetric doubly stochastic matrix.
Similarly KA^{T} is also symmetric doubly stochastic matrix.
(iii) $A K=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right)=(A K)^{\mathrm{T}}$
$\Rightarrow \mathrm{AK}$ is symmetric doubly stochastic matrix.
Similarly $A^{T} K$ is also symmetric doubly stochastic matrix.

DEFINITION: 3

A matrix $A \in R^{n \times n}$ is said to be s-symmetric doubly stochastic matrix if $A^{S}=V A^{T} V$ where V is a permutation matrix with units in the secondary diagonal.

THEOREM: 7

Let $A \in R^{n \times n}$ is s-symmetric doubly stochastic matrix then $A^{S}=V A^{T} V$.

Proof:

$$
\begin{aligned}
\mathrm{VA} \mathrm{~A}^{\mathrm{T}} \mathrm{~V} & =\mathrm{V}\left(\mathrm{VA}^{\mathrm{S}} \mathrm{~V}\right) \mathrm{V}=\mathrm{V}^{2} \mathrm{~A}^{\mathrm{S}} \mathrm{~V}^{2} \\
& =\mathrm{A}^{\mathrm{S}} \text { where } \mathrm{V}^{2}=\mathrm{I}
\end{aligned}
$$

THEOREM: 8

Let $A^{T} \in R^{n \times n}$ is s-symmetric doubly stochastic matrix then $A^{T}=V A^{S} V$.

Proof:

$$
\begin{aligned}
\mathrm{VAA}^{\mathrm{S}} \mathrm{~V} & =\mathrm{V}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{~V}\right) \mathrm{V}=\mathrm{V}^{2} \mathrm{~A}^{\mathrm{T}} \mathrm{~V}^{2} \\
& =\mathrm{A}^{\mathrm{T}} \text { where } \mathrm{V}^{2}=\mathrm{I}
\end{aligned}
$$

THEOREM: 9

Let $A, B \in R^{n \times n}$ is s-symmetric doubly stochastic matrix then $\frac{1}{2}(A+B)$ is s-symmetric doubly stochastic matrix.

Proof:

Let A and B are s-symmetric doubly stochastic matrices if $A^{S}=V A^{T} V$ and $B^{S}=V B^{T} V$.
To prove $\frac{1}{2}(A+B)$ is s-symmetric doubly stochastic matrix we will show that

$$
\frac{1}{2}(A+B)^{S}=V \frac{1}{2}(A+B)^{T} V
$$

Now

$$
=\frac{1}{2}\left(A^{S}+B^{S}\right) \text { where } V A^{T} V=A^{S} \text { and } V B^{T} V=B^{S}
$$

$$
=\frac{1}{2}(\mathrm{~A}+\mathrm{B})^{\mathrm{S}}
$$

THEOREM: 10

If A and B are s-symmetric doubly stochastic matrices then $A B$ is also s-symmetric doubly stochastic matrix.
Proof:
Let A and B are s-symmetric doubly stochastic matrices if $A^{S}=V A^{T} V$ and $B^{S}=V B^{T} V$.
Since A^{T} and B^{T} are also s-symmetric doubly stochastic matrices then $A^{T}=V A^{S} V$ and $B^{T}=V B^{S} V$.
To prove A B is s-symmetric doubly stochastic matrix we will show that

$$
(\mathrm{AB})^{\mathrm{S}}=\mathrm{V}(\mathrm{AB})^{\mathrm{T}} \mathrm{~V}
$$

Now $\quad V(A B)^{T} V=V B^{T} A^{T} V=V\left(V B^{S} V\right)\left(V A^{S} V\right) V \quad$ where $A^{T}=K A^{S} K$ and $B^{T}=K B^{S} K$.

$$
\begin{aligned}
& =V^{2} B^{S} V^{2} A^{S} V^{2}=B^{S} A^{S} \text { where } V^{2}=I \\
& =(A B)^{S}
\end{aligned}
$$

THEOREM: 11

If A is s-symmetric doubly stochastic matrix and V is a permutation matrix with units in the secondary diagonal then VA is also s-symmetric doubly stochastic matrix.

Proof:

Let A is s-symmetric doubly stochastic matrices if $A^{S}=V A^{T} V$. Since A^{T} is s-symmetric doubly stochastic matrices then $A^{T}=V A^{S} V$. To prove $V A$ is s-symmetric doubly stochastic matrix we will show that

$$
(\mathrm{VA})^{\mathrm{S}}=\mathrm{V}(\mathrm{VA})^{\mathrm{T}} \mathrm{~V}
$$

Now $\quad V(V A)^{T} V=V\left(A^{T} V^{T}\right) V=V\left(V A^{S} V\right) V^{2}$

$$
\begin{aligned}
& =\mathrm{A}^{\mathrm{S}} \mathrm{~V}^{\mathrm{S}} \text { where } \mathrm{V}^{2}=\mathrm{I} \\
& =(\mathrm{VA})^{\mathrm{S}}
\end{aligned}
$$

RESULT:

For $\mathrm{A} \in \mathrm{R}^{\mathrm{nx}} \mathrm{n}$ is s-symmetric doubly stochastic matrix for the following are holds.
[1] $A^{S}=V^{T} V$
[2] VA is symmetric doubly stochastic matrix.
[3] AV is symmetric doubly stochastic matrix.

Example:

$\mathrm{A}=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right) \quad \mathrm{A}^{\mathrm{T}}=\mathrm{A}^{\mathrm{S}}=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right) \quad \mathrm{V}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
(i) $\mathrm{V} \mathrm{A}^{\mathrm{T}} \mathrm{V}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)=\mathrm{A}^{\mathrm{S}}$

$$
\text { Similarly } \mathrm{VA}^{\mathrm{S}} \mathrm{~V}=\mathrm{A}^{\mathrm{T}}
$$

(ii) $V A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)=\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2\end{array}\right)=(V A)^{T}$ $\Rightarrow \mathrm{VA}$ is symmetric doubly stochastic matrix.
Similarly VA^{T} is also symmetric doubly stochastic matrix.
(iii) $\mathrm{AV}=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2\end{array}\right)=(A V)^{\mathrm{T}}$
$\Rightarrow \mathrm{AV}$ is symmetric doubly stochastic matrix.
Similarly $A^{T} V$ is also symmetric doubly stochastic matrix.

DEFINITION: 4

A matrix $A \in R^{n \times n}$ is said to be s-k-symmetric doubly stochastic matrix if
[1] $\mathrm{A}=\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}$
[2] $A^{\mathrm{T}}=\mathrm{KVAVK}$
[3] $\mathrm{A}=\mathrm{VKA}^{\mathrm{T}} \mathrm{KV}$
[4] $A^{T}=V K A K V$
Where V is a permutation matrix with units in the secondary diagonal and K is a permutation matrix and $\mathrm{k}=\left\{(1)\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$.

THEOREM: 12

Let $A \in R^{n \times n}$ is s-k-symmetric doubly stochastic matrix then
[1] $A^{s}=K V A^{T} V K$
[2] $A^{T}=K V A^{S} V K$
[3] $A^{\mathrm{S}}=\mathrm{VKA}^{\mathrm{T}} \mathrm{KV}$
[4] $A^{T}=V K A^{S} K V$

Proof:

(i) $\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}=\mathrm{K}\left(\mathrm{VA}^{\mathrm{T}} \mathrm{V}\right) \mathrm{K}$

$$
\begin{aligned}
& =K A^{S} K \text { where } V A^{T} V=A^{S} \\
& =K\left(A^{T}\right)^{T} K=K A^{T} K \text { where } A^{T}=A \\
& =A=A^{S} \text { where } K A^{T} K=A \text { and } A=A^{S}
\end{aligned}
$$

(ii) $\mathrm{KVA}^{\mathrm{S}} \mathrm{VK}=\mathrm{K}\left(\mathrm{VA}^{\mathrm{S}} \mathrm{V}\right) \mathrm{K}=\mathrm{K} \mathrm{A}^{\mathrm{T}} \mathrm{K}$ where $\mathrm{VA}^{\mathrm{S}} \mathrm{V}=\mathrm{A}^{\mathrm{T}}$

$$
\begin{aligned}
& =\mathbf{A} \text { where } \mathrm{K} \mathrm{~A}^{\mathrm{T}} \mathrm{~K}=\mathrm{A} \\
& =\mathrm{A}^{\mathrm{T}} \text { where } \mathrm{A}=\mathrm{A}^{\mathrm{T}}
\end{aligned}
$$

(iii) $\mathrm{VKA}^{\mathrm{T}} \mathrm{KV}=\mathrm{V}\left(\mathrm{KA}^{\mathrm{T}} \mathrm{K}\right) \mathrm{V}$

$$
\begin{aligned}
& =V A V \text { where } K A^{T} K=A \\
& =V A^{T} V \text { where } A=A^{T} \\
& =A^{\mathrm{S}} \text { where } V A A^{T} V=A^{\mathrm{S}}
\end{aligned}
$$

(iv) $V_{K A}{ }^{\mathrm{S}} \mathrm{KV}=\mathrm{V}\left(\mathrm{KA}^{\mathrm{S}} \mathrm{K}\right) \mathrm{V}=\mathrm{V}\left(\mathrm{K}\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}} \mathrm{K}\right) \mathrm{V}$

$$
\begin{aligned}
& =V^{T} V \text { where } K\left(A^{T}\right)^{T} K=A^{T} \\
& =A^{\mathrm{S}} \text { where } V A^{T} V=A^{\mathrm{S}} \\
& =\left(A^{T}\right)^{T}=A^{T} \text { where } A=A^{T}
\end{aligned}
$$

THEOREM: 13
Let $A, B \in R^{n \times n}$ is s-k-symmetric doubly stochastic matrix then $\frac{1}{2}(A+B)$ is s-k-symmetric doubly stochastic matrix.
Proof:
Let A and B are s-k-symmetric doubly stochastic matrix if $A=K V A^{T} V K$ and $B=K V B^{T} V K$.
To prove $\frac{1}{2}(A+B)$ is s-k-symmetric doubly stochastic matrix we will show that

$$
\frac{1}{2}(A+B)=K V \frac{1}{2}(A+B)^{T} V K
$$

Now $\quad K V \frac{1}{2}(A+B)^{T} V K=K\left(V \frac{1}{2}(A+B)^{T} V\right) K=K \frac{1}{2}(A+B)^{S} K$ using theorem (9)

$$
=K \frac{1}{2}(A+B)^{T} K=\frac{1}{2}(A+B) \text { using theorem (3) }
$$

THEOREM: 14

If A and B are s-k-symmetric doubly stochastic matrix then $A B$ is also s-k-symmetric doubly stochastic matrix.

Proof:

Let A and B are s- k-symmetric doubly stochastic matrix if $A=K V A^{T} V K$ and $B=K V B^{T} V K$.
Since A^{T} and B^{T} are also s-k-symmetric doubly stochastic matrices $A^{T}=K V A V K$ and $B^{T}=K V B V K$.
To prove A B is s-k-symmetric doubly stochastic matrix we will show that

$$
\mathrm{AB}=\mathrm{KV}(\mathrm{AB})^{\mathrm{T}} \mathrm{VK}
$$

Now $\left.\quad K V(A B)^{T} V K=K(V(A B))^{T}\right) V K=K(A B)^{S} K$ using theorem (10)

$$
=K(A B)^{T} K=A B \text { using theorem (5) }
$$

RESULT:

For $\mathrm{A} \in \mathrm{R}^{\mathrm{nx}}$ is s-k-symmetric doubly stochastic matrix the following are equivalent.
(i) $\mathrm{A}=\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}$
(ii) $\mathrm{A}^{\mathrm{T}}=\mathrm{KVAVK}$
(iii) $A=V K A^{T} K V$
(iv) $\mathrm{A}^{\mathrm{T}}=\mathrm{VKAKV}$

Example:

$A=\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right) \quad K=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad V=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
(i) $\mathrm{KVA}^{\mathrm{T}} \mathrm{VK}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)=\mathrm{A}$
(ii) KVAVK $=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)=\mathrm{A}^{\mathrm{T}}$

> (iii) $\mathrm{VKA}^{\mathrm{T}} \mathrm{KV}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)=\mathrm{A}$
> (iv) VKAKV $=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)=\mathrm{A}^{\mathrm{T}}$

REFERENCES:

[1] Ann Lec. Secondary symmetric and skew symmetric secondary orthogonal matrices;
i. Period, Math Hungary, 7, 63-70(1976).
[2] Hill, R.D, and Waters, S.R: On k-real and k-hermitian matrices; Lin.Alg.Appl., 169,17-29(1992)
[3] S.Krishnamoorthy, R.Vijayakumar, On s-normal matrices, Journal of Analysis and Computation, Vol5, No2,(2009)
[4] R.Grone, C.R.Johnsn, E.M.Sa,H.Wolkowiez, Normal matrices, Linear Algebra Appl. 87(1987) 213-225.
[5] G. Latouche, V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling, 1st edition. Chapter 2: PH Distributions; ASA SIAM, 1999.
[6] Hazewinkel, Michiel, ed. (2001), "Symmetric matrix", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
[7] S.Krishnamoorthy, K. Gunasekaran, N. Mohana, " Characterization and theorems on doubly stochastic matrices" Antartica Journal of Mathematics, 11(5)(2014).

