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. INTRODUCTION

Zadeh's [1] introduced the fuzzy set theory in 1965. Zadeh's [ 1] introduction of the notion of fuzzy set laid
the foundation of fuzzy mathematics . Sessa [2 ] has introduced the concept of weakly commuting and
Jungck [ 3] initiated the concept of compatibility. In, 1988, Jungck and Rhoades [4] introduced the notion
of weakly compatible . The concept of fuzzy metric space introduced by kramosil and Mishlek [ 5] and
modified by George and Veramani [ 6 ]. In 2009, M. Abbas et. al. [7] introduced the notion of common
property E.A. B.Singh et. al. [8] introduced the notion of semi compatible maps in fuzzy metric space .
Recently in 2011 , Sintunavarat and Kuman [ 9] introduced the concept of common limit in the range
property . Chouhan et.al. [10 ] utilize the notion of common limit range property to prove fixed point
theorems for weakly compatible mapping in fuzzy metric space .

I1. PRELIMINARIES
Definition 2.1 [ 11 ] Let X be any set . A Fuzzy set A in X is a function with domain X and Values in [ 0,1].
Definition 2.2[ 6] A Binary operation * : [0,1] X[0,1] —[0,1] is called a continuous t-norms
if an topological monoid with unit 1 such that a*b< ¢*d whenever a<c and b<d , for all
a,b,c,din [0,1].
Examples of t—norms are a*b =ab and a*b =min {a,b}.

Definition 2.3[ 6] The triplet ( X,M, *) is said to be a Fuzzy metric space if , X is an arbitrary  set, *isa
continuous t- norm and M is a fuzzy set on X?x(0,0) satisfying the following  conditions; for all x,y,z in X
and s,t>0,

(i) M(x,y,0) =0, M(x,y,t)>0,
(i) M(x,y,t) =1 for all t > 0 if and only if x=y,
(i) Myt = M(yxpt),
(iv) M(x,y,t) * M( y,z,5) < M( x,z, t+s),
(V) M(X,y,t) : [ 0,00 ) —[0,1] is left continuous.
Example 2.1[6] Let (X,d) bea metric space . Define a*b = min {a,b} and
M(x,y,t) = t/ t+d(x,y) forall x,y € X andallt>0. Then (X,M, *) is a fuzzy
metric space . It is called the fuzzy metric space induced by the metric d.
Definition 2.4 [ 6 ] A sequence {x,} in a fuzzy metric space (X,M,*) is called a Cauchy
Sequence if , lim ,_,.. M ( Xpp X t) = 1 for every t.>0 and for each p>0.
A fuzzy metric space(X, M,*) is Complete if ,every Cauchy sequence in X converge
to X.
Definition 2.5[6 ] A sequence {X, } in a fuzzy metric space ( X,M,*) is said to be Convergent to xin X if
,im L M( X, X, t) =1, for each t>0.
Definition 2.6 [12] Two self mappings P and Q of a fuzzy metric space (X,M,*) are said to be
Compatible , if lim,_,,M(PQx,,QPxn,t) =1 whenever {x,} is a sequence such that
lim,_.Px,= lim,_, Qx,=z,forsomezinX.
Definition 2.7 [ 13] Self maps A and S of a Fuzzy metric space (X,M,*) are said to be Weakly Compatible if
they commute at their coincidence points,
if, AP=SP for some peX then ASp=SAp.
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Lemma2.1[ 8] Let {y,} is asequence in an FM- space . If there exists a positive number k<1
suchthat  M(Yns2, Ve > Kt) = M(¥nag, Ynit) , 50, n €N,

then {y,} isa Cauchy sequence in X.

Lemma 2.2 [8] If for two points x, y in X and a positive number k <1
M(x,y,kt) > M(x,y,t) , then x =y.

Lemma 2.3 [ 14] For all x,y € X, M(x,y,.) isanon —decreasing function.
Definition 2.8 [8 ] A pair (A,S) of self maps of a fuzzy metric space (X,M,*) is said to be

Semi compatible if lim,_,, ASx, = Sx , whenever {x,} is a sequence such that

lim,_., AX,= lim,_,, Sx,=x, forsomex € X.

It follows that (A,S) is semi compatible and Ay = Sy then ASy = SAy

Example 2.2 Let X =[0,1] and (X,M, t) be the induced fuzzy metric space with

M(xyt=t/t+ | X-y | . Define self maps P and Q on X as follows :
, if 0<x<1 2, ifx=1
Px= x/2, if 1<x<2 and Qx = x+3/5.if 1<x<2

And x,=2-1/ 2" |Then we have P (1) = Q(1)=2 and S(2) = A(2) =|L.
PQ(1) =QP(1) =1 and PQ(2) = QP(2) = 2. Hence Px,_,1 and Qx,—1 akd QPx,—1, as n—oo.
Now ,
lim,_.. M (PQX,, Qy, t)=M(2,2,t) =1
lim,_, M(PQXp, QPxn,t) =M(2,1,t) = t/ 1+t < 1.
Hence (P,Q) is semi compatible but not compatible.
Definition 2.9 [ 9] A pair of self mapping P and Q of a fuzzy metric space (X,M,*) is said
to satisfy the (CLRg) property if there exists a sequence {x,} in X such that
lim,_, Px,= lim,_, Qx,=Qu, forsomeu € X.
Definition 210 [9] Two pairs (A,S) and (B,T) of self mappings of a fuzzy metric
Space (X,M, *) are said to satisfy the (CLRs7) property if there exist two sequence
{x.} and {y,} in X such that
lim_, Ax,= lim,_, Sx,= lim,_, By,= lim,_., Ty, =Sz,
for some z € S(X) and z € T(X).
Definition 2.11 [ 9] Two pairs (A,S) and (B,T) of self mappings of a fuzzy metric
Space (X,M, *) are said to share CLRg of S property if there exist two sequence
{x,} and {y,} in X such that
lim,_., Ax,= lim,_, Sx,= lim_., By,= lim,_, Ty, =Sz,
for some z e X.
Proposition 2.1 [ 4] In a fuzzy metric space (X,M,*) limit of a sequence is unique.
Example 2.3 Let X =[ 0,0) be the usual metric space . Define g, h : X—X by
gx=x+3and gx =4x, forall x e X. We consider the sequence {x,}={1+ 1/n}.
Since lim,_, gX,= lim_,hx,=4=h(1) e X.
Therefore g and h satisfy the (CLRg) property.
Lemma 2.4 Let A, B, Sand T be four self mapping of a fuzzy metric space (X,M,*)
Satisfying following
1. The pair (A,S) (or (B,T)) satisfies the common limit in the range of S property
(or T property )
2. There exists a constant k € (0,1) such that
( M( Ax,By, Kt)) 2> min (( M( Sx, Ty,t))?, M(Sx,Ax,t ), M(Sx,By,2t),M(Ty,Ax,t)
M(Sx,By,2t), M(Ty,By,t) ), Forall x,y € X andt>0
3. A(X) €T(X) (orB(X) cS(X)).
Then the pairs (A,S) and (B, T) share the common limit in the range property.
Singh and Jain [ 8] proved the following results.
Theorem 2.1 Let A,B,S and T be self maps on a complete fuzzy metric space (X,M,*)
Satisfying
1. AX) cT(X),B(X) c T(X)
2. One of A and B is continuous.
3. (A,S) is semi compatible and (B,T) is weak compatible.
4. ForallxyeX andt>0
M(Ax,Bx,t) > r (M (Sx,Ty,t) ),
Where r : [0,1]—[0,1] is a continuous function such that r(t) >t , for each 0<t<1 . Then
AB,S and T have a uniqgue common fixed point.
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I11. MAIN RESULT
In the following theorem we replace the continuity condition by using (CLRg) property.
Theorem 3.1 Let A, B, Sand T be self mapping on a complete fuzzy metric space (X,M,*),
where * is a continuous t — norm definied by ab = min [a,b] satisfying
(i) AX) €T (X), B(X) cS(X).
(ii) (B,T) is semi compatible ,
(iii) Then forall x,y € X andt>0.
M (Ax, By, kt) > ¢ [ min (M (Sx, Ty 1), { M(Sx,Ax,t) . M(By,Ty,t) },
Y% (M (AX Tyt) + M(By,Axt) ]
Where ¢ : [0,1] — [0,1] is a continuous function such that ¢ (1) =1, ¢ (0) =0
and ¢ (b) =b, for 0 < b<1.
If the pair (A,S) and (B, T) share the common limit in the range of S property ,
then A, B, S and T have a unique common fixed point
Proof —Let x, be any arbitrary point for which there exist two sequences {x,} and {y.}
in X such that
Yon+1 = AXon = TXone1 and Yon+2 = BXon+1 = SXonso, forn=0,1,2,...
NOW’ M(y2n+1,y2n+2,kt) = M(AXZn,BX 2n+1,kt)
> ¢ [ min ( M(( Sin'TX 2n+l, t ) ,{ M( SXon A,X 2n 't . M( BX2n+1yTX n+, t)},
iz (M (AXZn, T2n+1,t) + M( BX2n+1,AX 2r1,t ) )]
z ¢ [min (M(yZn,y 2n+1, t )1 { M(yZn, Yon+1 :t) . M( Yon+2, Yon+1 ,t) }:
Y2 (M(Yani1 Yo ) + M(Yane2Y 2ne1 1)) ]
M(Yzn+1Y 20+2.KE) > M(Yan Yons1,t)
Similarly, we can proved  M(Yzn+2, Yoniat) > M(Yan+1Y 2n42)
Ingeneral, M(YnirYn ) > M (YnYnst)
Thus, from this we conclude that { M (yn.1 Y nt) isan increasing sequence of positive
real numbersin[0,1] and tends to limit 1<I .
If 1<1,then M(YnirYnt) = (M (Yn Yner 1),
Letting n—o0, we gt lim, ., M(YnesYn )= @ [ 1im e M (yp Yner 1) ]
1>¢() =l (Since ¢(b) >b)
a contradiction . Now for any positive integer g
M(Yn,y n+q,t) > M( ¥n, Yn+1, Yn+q L /2(q-1)+l ) * M( Yn+1,Y n+2 Yn+g ,t/2(q-1)+1)*...*
M(Yn+q+l, Yn+q, t/ Z(q'l)"'l)
Taking limit, we get
lim,c; M(YnYneqt) = limy e M(Yn, Yoet, Yieg 1/2(0-1)+1 ) * iMoo M( Va1 Y ez Yoeq 1/2(9-
1)+1)** lim M( Yn+a+1, Yn+qg, t/2 (Q'l)"'l )

Limy e M (YnYngt) > T¥I¥1%. *1=1
Which means {y,} is a Cauchy sequence in X . Since X is complete , then y,—z in X.
That is { AXon} , {TXon+1}, {BXon+1} and {Sx,,} also converges to z in X.
Since, the pair (A,S) and (B,T) share the common limit in the range of S property , then there exist
two sequences {x,} and {y,} in X such that
lim,_., Ax,= lim_, Sx,= lim_, By,= lim_, Ty,=Sz,, forsome z e X.
First we prove that Az= Sz
By (3.3) , putting x=2z and y=y,, we get
M(Az,By,,kt) > @ [ min (M ( Sz, Ty,,t), { M(Sz,Az,t) .M(By, Ty,t) },
Y% ( M(Az, Ty, t)+ M( By, Az,t)) ]
Taking limit n—o , we get
M(AzSzkt) > @ [ min ( M( Sz, Sz, t), { M (Sz,Az,t) . M(Sz,Sz,t) },
Y%(M (Az,Sz,t) + M(Sz,Az,t) ) ]
> @[min( 1, {M(Sz, Az,t). 1}, M(Sz,Azt)]
M(Az,Sz,kt) > M (Sz, Azt)

Hence by Lemma 2.2, we get Az=Sz (1)
Since, A(X) € T(X), therefore there exist u € X, such that Az=Tu ...(2)
Again , by inequality (iii), putting x=z and y=u, we get

M(Az,Su,kt) > @ [ min (M( Sz, Tu, t), { M (Sz,Az,t) . M(Bu,Tu,t) },
Y%(M (Az,Tut) + M(Bu,Az,;t)) ]
Using (1) and (2), we get
M(Tu, Bu,kt) > @ [ min (M(Az, Tu, t), { M (Az,Azt) . M(Bu, Tu, t) },
Y (M (Az,Azt) + M(Bu, Tut))]
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> @ [ min M(Tu,Tu,t), { 1. M(Bu, Tu,t) } , M (Bu,Tu,t)]

M(Tu,Bu,kt) > M (Bu, Tu,t)
Hence , by Lemma 2.2 , we get Tu=Bu ...(3)
Thus, from (1),(2) and (3) , we get Az=Sz=Tu=Bu .4
Now , we will prove that ~ Az=z

By inequality(iii), putting x=z and y = Xpn+1, We get

M(AZ,BXon+1 ,kt) =@ [ min ( M(Sz,TXzn:1,t) , { M(Sz,Az,t) . M(BXone1, TX 2ne1.t) }

Y2( M(AZ, TXons1t) + M(BXani1,AZY) )]

Taking limit n —o0 , using (1) , we get

M(Az,z,t) > @ [ min (M(Sz,z,t), { M(Az,Az,t) . M(z,2,t) }, Y2 ( M(Az,z,t)+ M(z,Az,1))]

M(Az,z,t) > @ [ min (M(Az,z,t), {1,1}, M(Az,z!) ]

M(Az,z,t) > M(Az,z,t)

Hence , by Lemma 2.2 , we get Az=z

Thus , from (4), we get z=Tu=Bu

Now , Semi compatibility of (B,T) gives BTy, —Tz,ie. Bz=Tz.

Now, putting x=z and y=z in inequality (iii), we get

M(Az,Bzt)>@ [ min (M(Sz,Tzt),{ M (Sz,Az,t) . M(Bz,Tzt) },

1/2 (M(Az,Tz,t)+ M(Bz,Azt))]
M(Az, Bz,t)>@ [ min (M(Az,Bzt),{M (Az,Az,t) M(Tz,Tz1) },
1/2 (M(Az,Bz,t)+ M(Bz,Azt))]
M(Az,Bzt) > M(Az,Bzt)
Hence , by Lemma 2.2, we get Az=Bz.
And, hence Az=Bz=z.
Combining ,all result we get  z= Az=Bz=Sz=Tz.
From, this we conclude that z is a common fixed point of A,B,Sand T.
Uniquness
Let z; be another common fixed point of A,B,Sand T. Then
2y = Az, =Bz, =Sz, =Tz, and z =Az=Bz=Sz=Tz
Then, by inequality ( iii) , putting x=z and y =z,,we get
M(z,z, kt) = M(Az,Bz, t) > @ [ min ( M(Sz, Tz, t), {M(Sz,Az,t) . M(Bz, Tz, 1)},
Y2 (M( Az, Tzy,t) + M(Bzy,Az,1))]
>@ [ min (M (z,z.,t) , { M(z,2,t) . M(z,21%) },
Y% (M(z,z11) + M(z12,1)) ]
> @ [ min (M(z,z.1), 1, M(2,24,t)
M(Z,Zl’t) > M(Z,Zl,t)
Hence, from Lemma 2.2, we get  z=z;
Thus z is the unique common fixed point of A, B, Sand T.

Corollary 3.2 Let (X,M,*) be complete fuzzy metric space . suppose that the mapping
A, B,S and T are self maps of X satisfying( i-ii) conditions and there exist ke (0,1) such
that
M(AXx,By,kt) > M(Sx,Ty,t), M(Ax,Sx,t), M(By,Ty,t), M(BY,Sx,2t), M(AX,Ty,t)

For every x,y € X, t>0.Then A,B,Sand T have a unique common fixed point in X.

Corollary3.3 Let (X,M,*) be complete fuzzy metric space . suppose that the mapping
A, B,Sand T are self maps of X satisfying (i-ii) conditions and there exist ke (0,1) such
that

M(AX,By,kt) = M(Sx,Ty,t), M(Sx,Ax,t), M(AX, Ty,t)
For every x,y € X, t>0. Then A;B,S and T have a unique common fixed point in X.
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