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Abstract: In this paper a single item inventory model is developed for deteriorating items with non- 

instantaneous deterioration and time varying demand sensitive to the selling price. To compensate for the 

inconvenience due to stock out and to reduce the lost sales during partial backordering period a price discount 

is declared on the backordered items. Numerical examples are presented to illustrate the model. Cases are 

discussed for optimal price, price discount, and optimal profit per unit time. Tables, sensitivity analysis and 

graphs are formed to depict the effects of changes in various parameters on optimal decisions. 
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I. INTRODUCTION 
So many inventory models with constant demand rate have been formulated by researchers in the past. But 

usually demand may depend on many factors like time, price, stock on hand, advertisement and frequency etc. 

Firstly Silver and Meal (31) introduced economic order quantity model with assuming time-varying demand 

rate. After that many researchers formulated inventory models with time varying demand. Panda et al (24), 

Skouri et al (32) and Karmarkar and Chaudhary (16) worked on inventory problems with time varying demand. 

In the present situation of competitive market pricing policy has a great importance .Adequate pricing and 

marketing policies may uplift the companies from bottom-line in such competition. Present time is the time 

where fashion changes very soon as new products are launched day by day. Therefore, it is essential to make 

such pricing policy which can ensure sale of the entire stock before the next cycle starts. Thus in the demand 

function price factor has a great value. Papachristos and Skouri (28), Chang et al (7), He and huang (14) 

developed inventory models with price dependent demand. Khedlekar et al (17) formulated an inventory model 

with price and time decreasing demand using preservation technology for deteriorating items. Mashud et al (20) 

developed an inventory model for deteriorating items rates involving partial backlogging and price and stock 

dependent demand. In inventory control problems deterioration of many items is a key factor which cannot be 

ignored. There are many products of real life which decay or deteriorate day by day. Ghare and Schrader (12) 

were the first who developed an inventory model considering deterioration of an item. Then Covert and Philip 

(9) extended Ghare and Schrader‟s model including a two-parameter Weibull distribution deterioration function 

in their model. Mukhopadhyayet al (21), Shah and Acharya (30), Bhuniaet al (4), Skouri et al (32) and many 

others developed inventory models for time dependent deteriorating items. 

In the existing literature it was assumed that the deterioration starts form the time of arrival of inventory to the 

stock. But, in real market, most goods would have a span of maintaining quality of original condition and 

deterioration starts after that span. This feature is known as „non-instantaneous deterioration. This feature can be 

observed in fruits, green vegetables, food stuffs and fashionable goods. Many researchers like Castro & Alfa (6), 

Chang et al. (7) and Bhojak & Gothi (3), Vaish and Garg (35), Garg, Vaish and Gupta (11) and Vaish and 

Agarwal (34) have worked in this direction. It has been seen many times that stock ends before the arrival of 

next replenishment and some customers do not want wait up to the next replenishment. This is termed as partial 

backlogging. Cheng and Dye (8), Dye et al. (10) and Pandey et al (27) developed inventory models with partial 

backlogging. Further price discount on unit selling price of goods is a factor for customers to attract them to buy 

more and more. For example, in the market of fashionable goods after some times, some products start to lose 

their luster, but they can be sold with some discounted price. A supplier also wants to sell more to make large 

profits. Further to secure orders during the shortage period and avoiding lost sales from royal and patient 

customers, the inventory manager offers a backorder price discount. Thus price discount is one of the key 

factors which enhance the demand which in turn increases the total profit per unit time. Ardalan(2),Sana and 

Chaudhari (29), Hsu and Yu (15), Panda et al. (25),Cardanas-Barron et al (5),Garg, Vaish and Gupta (11), 



Optimal Pricing Policy for Deteriorating Items with Variable Demand Rate and Offering Backorder  

www.ijesi.org                                                              51 | Page 

Vaish, B and Agarwal, D(34), Pan and Hsiao (23) and Lee et al (18) developed  inventory models considering 

the price discount factor. Pal and Chandra (22) formulated an inventory model with permissible delay in 

payment, stock dependent demand and price discount on back orders.Annadurai and Uthaykumar (1) also 

considered price discounting on back orders while designing their ordering cost reduction inventory model for 

defective products. Pandey and Vaish (26) developed an inventory model with seasonal demand and price 

discounting on back orders. 

In the present paper an inventory model is developed by considering price sensitive and linearly increasing 

demand. Deterioration is non- instantaneous and is described by two parameter weibull function. In the model it 

is assumed that deteriorated items are in a condition to be sold with some price reduction. Shortages are allowed 

and are partially backlogged. A fraction of demand is backordered which depends on waiting time up to the next 

replenishment. Practical experience of market tells that the sales are increased significantly if discount is offered 

on unit selling price. The present paper deals with a declaration of price discount on unit selling price of 

backordered quantity when stock out period starts to enhance the demand and simultaneously to reduce the lost 

sales. Further, in the existing literature most of the inventory models are developed for determining minimum 

total cost per unit time. Very few researchers have developed models to obtain maximum profit per unit time. In 

the present model profit maximization technique is used to solve the model. Numerical illustrations, tables, 

graphs and sensitivity analysis are presented in the model to explain the various factors involved in the model. 

II. ASSUMPTIONS AND NOTATIONS: 

1. Demand is price sensitive and time dependent and it follows the pattern D (t) = ( )
a

b t
p


 ,where p is selling 

price per unit, a > 0 is a scaling factor, b>0 and β>1is the index of price elasticity. 

2. Shortages are allowed and are partial backlogged. The backlogged rate is described as decreasing function of 

the waiting time 
1

1 (T t )  
where (  > 0).Thus a fraction of the demand is backlogged 

3. d1 (0 d1  1)is the percentage discount offer on unit selling price on backordered quantity declared at the 

start of the stock out period.  = (1-d1)
-n

 (n R, the set of real numbers and n  1) is the positive effect of 

discounted selling price on demand during stock out period, when 
1

d 0 , 1   i.e. the demand during stocked 

period will not be increased. 

4.   d2 is the percentage discount offered on unit selling price of deteriorated quantity.  

5. The deterioration is non-instantaneous and follows Weibull distribution function.  

Therefore deterioration rate W (t) =
1

t


 


 where, λ>0,λ<<1 and φ is the shape parameter  

(φ>0). 

6. μ is the time at which deterioration starts. 

7. Delivery lead time is zero and cycle length of the inventory model is finite as well as infinite in different 

cases considered separately. 

c Purchasing cost per unit 

T Cycle length 

t1  The time at which inventory level becomes zero 

Q1 Initial inventory level at the beginning of each cycle and 

Q2             Backordered quantity 

Q         Ordered Quantity (Q1+Q2) 

DQ       Deteriorated quantity 

h Holding cost  per unit per unit time 

s Shortage cost per unit per unit time 

l Lost sale cost per unit per unit time 

O Ordering cost per order 

δ   Rate of backlogging 

SR Sales revenue per replenishment cycle 

I(t)          The inventory level at time t. 

F(t1, T)Profit per unit time 

t1*, T
*
, F

*
(t1, T), Q

*
 represents the optimal values of t1, T, F (t1, T), Q, 

 

MODEL FORMULATION and ANALYSIS: 

The behavior of the inventory level during cycle T is depicted in figure1. 
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(Fig- 1) 

 

The differential equations governing the fluctuation of inventory with time t are shown as below: 

( )
( )

d I t a
b t

d t p


                                                        0 t  
                                                         

(1)  

1( )
( ) ( )

d I t a
t I t b t

d t p




 


                                          

1
t t                                                            (2)

  

( )
( )

1 ( t)

a
b t

d I t p

d t T






 


 

                                                     
1

t t T                                                            (3) 

With boundary condition: 

1 1
(t ) 0 , (0 )I I Q                                                                                                                        (4) 

the solutions of above equations are given by: 
2

1
( ) ( )

2

a t b t
I t Q

p


   

                                                       

0 t  
                                                                 

(5) 

2 2 1 2

1 1
( ) ( )

2 2 2 ( 2 )( 1)

a t b t a t b t a t b t
I t X t

p p p

 



  

   




 

      


   

1
t t  

                                                           
(6) 

where

2 21

1 1 1
( )

2 ( 2 )( 1)

a t b t b ta t
X

p p



 







   


  

1 1

(1 )
( ) (t t ) ( )(lo g [1 (T )] lo g [1 (T )])

b a b T
I t t t

p


  
 

  


        

  
1

t t T 
                                       

(7)

 

 

the value of Q1 and Q2 are obtained as 
2 1 2

1 1

1
( )

2 2 ( 2 )( 1)

a t b t a b
Q X

p p

 



 

   
 



 

    


                                                                                              

(8) 

2 1 1

(1 )
( ) lo g [1 (T )] (T )

a b T b
Q t t

p


  


  


                                                                                           (9) 

 

Deterioration Quantity DQ  

 

                                                                                              (10) 

 

Sales Revenue SR 

 

SR= SR from Demand (0, t1) + SR from Deterioration Quantity + SR from Back Ordered Quantity 

1 2

1 1

1 1

0

Q Q ( ) Q ( )
2

t

a t b ta
D b t d t

p p
 

     
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2

1 1

2 2 1 1 2

2 2 1 2

1 1 1 1

2 2

1 1 1

{ ( ) (1 ) (1 ) }
2

{ ( ) (1 )( ( )
2 2 2 ( 2 )( 1)

(1 )
(1 )( ( ) lo g [1 (T )] (T )}

a t b t
S R p d d Q d Q

p

a t b t a t b t a b
S R p d d X

p p p

a b T b
d t t

p



 


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

   
 


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           (11) 

Purchasing cost PC 

1 2

2

1 1

1 2

1 1

{ }

{ ( )
2

(1 )
( ) lo g [1 (T )] (T )}

2 ( 2 )( 1)

P C c Q Q

a t b t
P C c X

p

a b a b T b
t t

p p




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 

 
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 

 

  


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                                                 

(12) 

Holding cost HC 
1

0

2 3 1 2 3

1 1 1 1 1

2 1 2 3

1 1

{ ( ) ( ) }

{
3 ( 1)( 3 )2 ( 1) ( 1)( 2 )

( ) }
2 ( 1) 2 ( 3 )( 2 )

t

H C h I t d t I t d t
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H C h
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  

 

    
   

   
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 

 

                                                                                                                                                                      

                                                                                                                                                                (13) 

Shortage cost SC 

1

( )

T

t

S C s I t d t    

1

1 1

2

1 1 12

(1 )
( t t ) ( )( lo g [1 (T )] lo g [1 (T )])

(1 )
{ (T t ) ( )( (T ) lo g [1 (T )])}

2

T

t

b a b T
S C s t t d t

p

b a b T
S C s t t

p




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 
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  
 

 


         


        



                                       

(14) 

Lost sale cost LSC 

1

2 2

1 1 1

( )

( ) )
1 ( )

(1 )
{ ( )(T ) (T t ) ( ) lo g [1 (T )]}

2

T

t

a
b t

a p
L S C l b t d t

T tp

a b b a b T
L S C l t t

p p





 




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

  



  
 


        



                                         

(15) 

Ordering cost OC 

OC O                                                                                                                                                        

                                                                                                                                                              (16) 

 

Profit function per unit time for the system  
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                                                                                                                                                         (17) 

Now unit time profit is considered as a function of two variables t1 and T. To find out the optimal solution 

the optimal values of t1 and T are obtained by solving the following equations simultaneously 

1 1

1

( , ) ( , )
0 , 0

F t T F t T

t T

 
 

 
                                                                                                                   

                                                                                                                                                          (18) 

Provided
2 2 2

1 1 1

2 2

11

( , ) ( , ) ( , )
.

F t T F t T F t T

t Tt T

   
  

    

> 0                                                                                                         

                                                                                                                                                           (19) 

Numerical Illustration-1: 

λ=0.009,  =2.6 units, p=830rs, s=0.5rs/unit/time, l=1.2rs/unit/time, a=100, O =50rs/ order 

h=1.25rs/unit/time, n=1.5, b=2.8, c=170rs, β=1.16, d1=0.30, d2=0.15,φ=3, μ=0.30 weeks 

Applying the solution procedure described above the optimal values obtained is as follows: 

t1*= 1.82198weeks, T
* 
=3.62586weeks,F

*
(t1, T) =1939.32rs, Q

* 
=8.82552 units 

 

Effects of parameter"p" on Total Profit per Unit Time 

%change in p p t1 
 
T F(t1,T) 

-20% 664.00 1.71835 3.29895 1,356 

-15% 705.5 1.7494 3.3958 1500.95 

-10% 747 1.7766 3.48141 1646.7 

-5% 788.5 1.80062 3.55761 1792.85 

0 830 1.82198 3.62586 1939.32 

5% 871.5 1.8411 3.68735 2086.06 

10% 913 1.8583 3.74303 2233.02 

15% 954.5 1.87387 3.79369 2380.18 

20% 996 1.88802 3.83997 2527.5 

(Table -1)                                                                           (Fig-2) 

Effects of parameter"δ”on Total Profit per Unit Time 

%change inδ δ t1 
T F(t1,T) 

-20% 2.08 2.23664 4.50151 2,409 

-15% 2.21 2.11693 4.24585 2271.44 

-10% 2.34 2.00887 4.0172 2148.84 

-5% 2.47 1.91097 3.81161 2038.72 

0 2.6 1.82198 3.62586 1939.32 

5% 2.73 1.74081 3.4573 1849.16 

10% 2.86 1.66655 3.30371 1767.03 

15% 2.99 1.5984 3.16324 1691.93 

20% 3.12 1.53567 3.03431 1623 

(Table 2)                                             (Fig-3) 
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Effects of parameter"b" on Total Profit per Unit Time 

 
%change in b b t1 T F(t1,T) 

-20% 2.24 1.82185 3.62573 1,552 

-15% 2.38 1.82189 3.62577 1649.15 

-10% 2.52 1.82192 3.62581 1745.87 

-5% 2.66 1.82195 3.62584 1842.6 

0 2.8 1.82198 3.62586 1939.32 

5% 2.94 1.82201 3.62589 2036.04 

10% 3.08 1.82203 3.62591 2132.77 

15% 3.22 1.82205 3.62593 2229.49 

20% 3.36 1.82207 3.62595 2326.22 

(Table 3)                                         (Fig-4) 

 

Effects of parameter"λ" on Total Profit per Unit Time 
% change in λ λ t1 T F(t1,T) 

-20% 0.0072 1.82859 3.63262 1,942 

-15% 0.00765 1.82692 3.63091 1941.02 

-10% 0.0081 1.82526 3.62922 1940.45 

-5% 0.00855 1.82362 3.62753 1939.88 

0 0.009 1.82198 3.62586 1939.32 

5% 0.00945 1.82036 3.62421 1938.76 

10% 0.0099 1.81875 3.62256 1938.21 

15% 0.01035 1.81715 3.62093 1937.66 

20% 0.0108 1.81556 3.61931 1937.12 

                                       (Table 4)                                                    (Fig-5) 

 

Effects of parameter"β" on Total Profit per Unit Time 

 

 

 

 

 

 

 

 

 

(Table 5)                                          (Fig-6) 

 

Sensitivity Analysis 
Parameter % Change % Change t1 % Change T % Change F 

p -20 -0.05687 -0.09016 -0.30078 

 
-10 -0.02489 -0.03983 -0.150887 

 

10 0.019934 0.032315 0.151444 

 

20 0.036246 0.05905 0.303219 

δ -20 0.2275875 0.241501 0.242187 

 

-10 0.102575 0.10793 0.1080378 

 
10 -0.085308 -0.088847 -0.08884 

 
20 -0.157142 -0.163147 -0.1631087 

b -20 -0.000071 -0.000035 -0.199794 

 

-10 -0.000032 -0.000013 -0.1496246 

 

10 0.000027 0.0000137 0.0997514 

 

20 0.000049 0.0000248 0.1995029 

λ -20 0.003627 0.001864 0.001381 

 
-10 0.0018 0.000926 0.0005826 

 

10 -0.001772 -0.0013596 -0.00057 

 

20 -0.00352 -0.001806 -0.0011344 

β -20 -0.062141 -0.008797 -0.010477 

 
-10 -0.01989 -0.01209 -0.003356 

 

10 0.0091274 0.0046857 0.001548 

 

20 0.0133096 0.006831 0.00224821 

(Table 6) 

 

Observations 

1. Table (1) reveals that as the selling price (p) increases, the unit time profit of the system also increases. 

% changein β β t1 T F(t1,T) 

-20% 0.93 1.70876 3.51020 1,919 

-15% 0.986 1.75385 3.55627 1927.07 

-10% 1.044 1.78574 3.58884 1932.81 

-5% 1.102 1.80734 3.61091 1936.69 

0 1.16 1.82198 3.62586 1939.32 

5% 1.218 1.83189 3.63599 1941.1 

10% 1.276 1.83861 3.64285 1942.31 

15% 1.334 1.84315 3.64749 1943.12 

20% 1.392 1.84623 3.65063 1943.68 
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2. From table (2) it is observed that as the rate of backlogging (δ)decreases, the unit time profit of the system 

increases. 

3. Table (3) reveals that as (b) increases, the unit time profit of the system also increases. 

4. From table (4) it is observed that as (λ) decreases the unit time profit of the system increases. 

5. Table (5) reveals that as (β) increases, the unit time profit of the system also increases. 

6. From sensitivity table (6) it has been observed (λ)&(β)are negligible sensitive to t1,T & F(t1,T) .(b) is  

negligible sensitive to t1,T and it is moderate sensitive to F(t1,T). (δ)shows moderate sensitivity to  t1,T & 

F(t1,T). (p) is moderate sensitive to t1,and T fairly sensitive to  F(t1,T). 

 

Special Cases of the Modal 

Case-1: To find optimal price  

In this case unit time profit is a function of two variables t1 and p. To find out the optimal solution 

1 1

1

( , ) ( , )
0 , 0

F t p F t p

t p

 
 

 
                                                                                                                                      

   

                                                                                                                                                                 (20) 

And the optimal values of t1 and p are obtained by solving these equations simultaneously provided  
2 2 2

1 1 1

2 2

11

( , ) ( , ) ( , )
.

F t p F t p F t p

t pt p

   
  

    

> 0                                                                                                                

                                                                                                                                                                  (21) 

 

Numerical Illustration-2: 

λ =0.009,  =35.6 units, s=0.2rs/unit/time, l=1.2rs/unit/time, a=50000, O =50rs/ order 

h=1.25rs/unit/time, n=1.5, b=.90, c=40rs, β=1.85, d1=0.20, d2=0.15, φ=2, μ=2 weeks, T=2.8 weeks.Applying the 

solution procedure described above the optimal values obtained are as follows:t1*= 2.20304 weeks, p
* 

=112.209rs, F
*
(t1,p)=622.025rs,Q

* 
= 27.053units 

If price discount is not offered on backordered quantity then the optimal values obtained from above parameters 

are as follows: t1*= 1.69318 weeks, p
* 

=3.36376rs, F
*
(t1,p)=1772.4rs,Q

* 
=9.1556 unit. These results show that 

sometimes price discount offered on backordered quantity is profitable. 

Case-2: To find the optimal backordering discount 

In this case unit time profit is a function of two variables t1 and d1. To find out the optimal solution  

1 1

1

( , )
0

F t d

t





, 1 1

1

( , )
0

F t d

d





                                                                                             

                                                                                                                                                                 (22) 

And the optimal values of t1 and d1are obtained by solving these equations simultaneously provided  
2 2 2

1 1 1 1 1 1

2 2

1 11 1

( , ) ( , ) ( , )
.

F t d F t d F t d

t dt d

   
  

    

> 0                                                                                                               

                                                                                                                                                                     (23)                            

 

Numerical Illustration-3: 

λ =0.009,  =8.6 units, s=0.5 rs/unit/time, l=1.2 rs/unit/time, a=200, O =50rs/ order 

h=1.25rs/unit/time, n=2, b=0.8, c=170rs, β=2.16, d2=0.15, φ=2, μ=20 days, T=90 days,p=630rs 

Applying the solution procedure described above the optimal values obtained are as follows: 

t1*= 73.433 days, d1
* 
=0.45932, F

*
(t1, d1) =164903rs, Q

* 
= 47158.189units 

 

Case-3: To find optimal values considering profit function F(t1) 
In this case the profit function per unit time is considered for single variable t1.  

The optimal value of t1 is obtained by solving the equation 

1

1

( )
0

d F t

d t
                                                                                                              (24) 

Provided
2

1

2

1

( )
0

d F t

d t


… ..                                                                                                                        

                          (25) 

Numerical Illustration-4: 

T=90 days,   λ=0.009, δ=8.6units, p=630rs, s=0.5rs/unit/time,   l=1.2rs/unit/time, a=100,  
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h=1.25rs/unit/time, n=1, μ=20 days, c=170rs, ϕ=2, o=50rs/order, β=2.16, b=0.8, d1=0.25, d2=0.15, Applying the 

solution procedure described above the optimal values obtained are as follows: 

t1*= 74.2445 days, F
*
(t1) =172292rs, Q

*
=49301,

2 *

1

2

1

( )
1 .0 1 1 2 3

d F t

d t
 

 
If price discount is not offered on backordered quantity then the optimal values obtained from above parameters 

are as follows: 

t1*= 73.9488 days,   F
*
(t1) =169567rs,Q

*
=48480.8,

2 *

1

2

1

( )
0 .9 5 6 6 1 5

d F t

d t
   

These results show that sometimes price discount offered on backordered quantity is profitable. 

 

III. CONCLUSION 

The present paper is designed with realistic features of price sensitive demand time dependent demand, 

non-instantaneous deterioration and partial backlogging. In the market of fashionable goods after some times, 

some products start to lose their luster, but they can be sold with some discounted price. In the model it is 

assumed that deteriorated items are in a condition to be sold with some price reduction. Therefore a d2 

percentage reduction in price is offered on each deteriorated unit. Further, to secure orders during the shortage 

period and avoiding lost sales from royal and patient customers, the inventory manager offers a backorder price 

discount. The most important feature of the model is the declaration of price discount at the start of shortage 

period so that demand is boosted in this period and more customers will be willing to wait for the next 

replenishment. Numerical illustrations are given to describe the model. Special cases for optimal price and 

optimal discount are presented. Numerical illustrations show that in most of the cases optimal price discount on 

backorders is profitable. Effects of some parameters involved in the problem on some factors have been 

discussed through tables and graphs and sensitivity analysis. Results noticed in tables, graphs and sensitivity 

analysis are suitable to real situations. The model could be useful in retail business of fashionable goods where 

partial backlogging occurs and deteriorated items can be sold on discounted price. The present study can be 

further extended for some different factors useful for inventory systems. 
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