Characterisation and Theorems on Quaternion Hermitian Doubly Stochastic Matrix:

Dr.Gunasekaran K. and Mrs.Seethadevi R.

Department of Mathematics, Government arts College (Autonomous), Kumbakonam, Tamilnadu, India. Corresponding Auther; Dr.Gunasekaran K.

Abstract : The concepts of quaternion hermitian doubly stoch	nastic are developed, basic theorems and some
results for these matrices and characterization are analyzed with	h examples.
<i>Key Words :doubly stochastic matrix, quaternion hermitian hermitian doubly stochastic matrix.</i>	doubly stochastic matrix, unitary quaternion
Date of Submission: 27-06-2018	Date of acceptance: 12-07-2018

Date of Submission. 27-00-2016 Date of acceptance: 12-07-2018

I. Introduction

The concepts of quaternion hermitian doubly stochastic matrix are applied. In this paper, [1, 4, 5, 6] the quaternion hermitian doubly stochastic matrix is developed in quaternion matrices. Denoted by A^{T} is the transpose of A and A^{*} is the conjugate transpose of A.

Definition 2.1 [3,2]

A matrix $A \in H^{n \times n}$ is said to be doubly stochastic if $A^* = A$ and $\sum_{i=1}^n a_{ij} = 1, j = 1, 2, ..., n$ &

$$\sum_{i=1}^{n} a_{ij} = 1, i = 1, 2, \dots n \text{ and all } |a_{ij}| \ge 0.$$

If A is doubly stochastic and also hermitian then it is called a quatemion hermitian doubly stochastic matrix.[QHDSM]

Theorem 2.1

Let A be a square matrix. Then A is quaternion hermitian Doubly stochastic iff $A = A^*$. **Proof:**

Let $A = (a_{ij})_{n \times n}$ be quaternion hermitian doubly Stochastic matrix.

Then $a_{ij} = a_{ji}$ for all i, j (i, j)th entry of $A = a_{ij} = a_{ji}$

$$(j,i)^{\text{th}}$$
 entry of $(\overline{A}) = (j,i)^{\text{th}}$ entry of $(\overline{A})^{\text{T}} = A^* => A = A^*.$

suppose A=A*. then $(i,j)^{th}$ entry of A= $(i,j)^{th}$ entry of $(A)^{T}$

(i.e) aij =
$$a_{ji}$$
 for all i,j

=> A is quaternion hermitian doubly Stochastic matrix.

EXAMPLE 1.1:

$$A = \begin{pmatrix} 1 & 2+i-j & -2-i+j \\ 2-i+j & 3 & -4+i-j \\ -2+i-j & -4-i+j & 7 \end{pmatrix}$$

$$A^{*} = \begin{pmatrix} 1 & 2-i+j & -2+i-j \\ 2+i-j & 3 & -4-i+j \\ -2-i+j & -4+i-j & 7 \end{pmatrix}$$

Theorem 2.2

If A and B are $n\!\times\!n$ quaternion hermitian doubly Stochastic matrices, then

- (i) $\frac{1}{2}(\overline{A+B}) = \frac{1}{2}(\overline{A}+\overline{B})$
- (ii) $(\overline{AB}) = \overline{A} \overline{B}$. (iii) $(AB)^* = B^*A^*$.
- (iv) $\frac{1}{2}(A+B)^* = \frac{1}{2}(A^*+B^*).$
- (v) $(KA)^* = KA^*$, where K is scalar.are also quaternion hermitian doubly stochastic matrices. **Proof:**
- (i) Let $A = (a_{ij})_{n \times n}$ and $B = (b_{ij})_{n \times n}$ quaternion hermitian doubly matrices then $\frac{1}{2}(A+B) = (c_{ij})$ is also $n \times n$ quaternion hermitian doubly stochastic matrix where $c_{ii} = a_{ii} + b_{ii}$

$$(i,j)^{\text{th}} \text{ entry of } \frac{1}{2} (\overline{A+B}) = \frac{1}{2} \overline{c_{ij}} = \frac{1}{2} (\overline{a_{ij}} + \overline{b_{ij}}) = \frac{1}{2} (\overline{a_{ij}} + \overline{b_{ij}}).$$

$$= \frac{1}{2} \quad (i,j)^{\text{th}} \text{ entry of } \overline{A} \left\{ + (i,j)^{\text{th}} \text{ entry of } \overline{B} \right\}$$

$$\Rightarrow \quad \frac{1}{2} (\overline{A+B}) = \frac{1}{2} (\overline{A} + \overline{B}).$$

(ii) Let A = $(a_{ij})_{n \times n}$ and B = $(b_{ij})_{n \times n}$ quaternion hermitian doubly matrices then AB = (c_{ij}) is an n×n quaternion hermitian doubly Stochastic matrix where $c_{ij} = \sum_{k=1}^{n} a_k b_k$

(i,j)th entry of
$$(\overline{AB}) = \overline{c_{ij}} = (\overline{a_{i1} + b_{1j}} + a_{i2}b_{2j} + \dots + a_{in}b_{nj})$$

$$= (\overline{a_{i1} + b_{1j}} + \overline{a_{i2} + b_{2j}} + \dots + \overline{a_{in} + b_{nj}})$$

$$= \sum_{k=1}^{n} \overline{a_{ik}} \ \overline{b_{kj}} = (i,j)^{\text{th}} \text{ entry of } (\overline{A} \ \overline{B}) \Longrightarrow (\overline{AB}) = (\overline{AB})$$

(iii) Let A = $(a_{ij})_{n \times n}$ and B = $(b_{ij})_{n \times n}$ quaternion hermitian doubly matrices then $\frac{1}{2}$ (A+B) is an n×n quaternion

hermitian doubly stochastic matrices.

- $(i,j)^{\text{th}}$ entry of $(AB)^* = (j,i)^{\text{th}}$ entry of $(\overline{AB}) = (j,i)^{\text{th}}$ entry of $(\overline{A} \ \overline{B}) = (i,j)^{\text{th}}$ entry of $[(\overline{B})^T (\overline{A})^T] = (i,j)^{\text{th}}$ entry of $B^*A^* \implies (AB)^* = B^*A^*$.
- (iv) Let A = $(a_{ij})_{n \times n}$ and B = $(b_{ij})_{n \times n}$ quaternion hermitian doubly matrices then $\frac{1}{2}$ (A+B) is an n×n quaternion hermitian doubly stochastic matrix. Since A* and B* are n×n quaternion hermitian doubly Stochastic matrix

Thus $\frac{1}{2}(A+B)$ * & $\frac{1}{2}(B*A*)$ are of same type.

$$\frac{1}{2} (i,j)^{\text{th}} \text{ entry of } (A+B)^* = \frac{1}{2} (j,i)^{\text{th}} \text{ entry of } (\overline{A+B}) = \frac{1}{2} (j,i)^{\text{th}} \text{ entry of } (\overline{A} \ \overline{B}) = \frac{1}{2} (j,i)^{\text{th}} \text{ entry of } [(\overline{A})^T + (\overline{B} \ \overline{B})^T] = \frac{1}{2} (i,j)^{\text{th}} \text{ entry of } (A^* + B^*).$$

(v) Let A = $(a_{ij})_{n \times n}$ quaternion hermitian doubly stochastic matrix the $(KA)_{n \times n}$ quaternion hermitian stochastic matrix and hence also $(KA)_{n \times n}^{T}$ quaternion hermitian stochastic matrix.

Since $(A^*)_{n \times n}$ quaternion hermitian doubly stochastic matrix and also $(KA^*)_{n \times n}$ quaternion hermitian stochastic matrix. Hence $(KA)^*$ and (KA^*) are of the same type.

Also $(i,j)^{th}$ entry of $(KA)^* = (i,j)^{th}$ entry of $(\overline{KA}) = K\overline{a_{ji}}$ [K is real, $\overline{K} = K$] = K(j,i)^{th} entry of $\overline{A} = K(i,j)^{th}$ entry of $(i,j)^{\text{th}}$ entry of $K(\overline{A}) => (KA)^* = KA^*$.

Where K is real.

EXAMPLE 1.2:

$$A = \begin{pmatrix} 1 & 2+i-j & -2-i+j \\ 2-i+j & 3 & -4+i-j \\ -2+i-j & -4-i+j & 7 \end{pmatrix}$$
$$B = \begin{pmatrix} 2 & 4+i-j & -5-i+j \\ 4-i+j & 2 & -5+i-j \\ -5+i-j & -5-i+j & 11 \end{pmatrix}$$

Theorem 2.3

if A and B are $n \times n$ quaternion hermitian doubly Stochastic matrices then

- (i) $\frac{1}{2}$ (A+B) is quaternion hermitian doubly Stochastic matrix.
- (ii) KA is quaternion hermitian Stochastic matrix, where K is real

(iii) $\frac{1}{2}$ (AB+BA) is not an quaternion hermitian doubly Stochastic matrix.

Proof:

Since A^* and B^* are $n \times n$ quaternion hermitian doubly stochastic matrices then $A=A^*$ and $B+B^*$.

(i)
$$\frac{1}{2}(A+B)^* = \frac{1}{2}\left(\overline{A+B}\right)^T = \frac{1}{2}\left(\overline{A}+\overline{B}\right)^T = \frac{1}{2}\left[\left(\overline{A}\right)^T + \left(\overline{B}\right)^T = \frac{1}{2}(A^*+B^*) = \frac{1}{2}(A+B) = \frac{1}{2}(A+B)$$
 is quaternion hermitian doubly stochastic matrix.

(ii) $(KA)^* = (\overline{KA})^T = (\overline{K} \overline{A})^T = (K\overline{A})^T [K \text{ is real}, \overline{K} = K] = K(\overline{A})^T = KA^* = KA$, where K is real. \Rightarrow (KA) is hermitian stochastic matrix, where K is real.

(iii)
$$\frac{1}{2}(AB+BA)^* = \frac{1}{2}[(AB)^* + (BA)^*] = \frac{1}{2}(A^*B^* + B^*A^*) = \frac{1}{2}(AB+BA) = \frac{1}{2}(AB+BA)$$

quaternions does not satisfy commute Property

$$\Rightarrow \frac{1}{2} (AB+BA) \text{ is not an quaternion hermitian doubly Stochastic matrix.}$$

Property 2.1

If $A \in H^{n \times n}$ is quaternion hermitian doubly stochastic matrix the A^n is also quaternion hermitian doubly stochastic matrix for $n \le 2$.

PROOF

$$A = \begin{pmatrix} 1 & 2+i-j & -2-i+j \\ 2-i+j & 3 & -4+i-j \\ -2+i-j & -4-i+j & 7 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 13 & 14+4i-4j & -26-8i+8j \\ 14-4i+4j & 33 & -46+10i-10j \\ -26+8i-8j & -46-10i+10j & 73 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 117 & 152+37i-37j & -284-81i+81j \\ 152-25i+25j & 356 & -498+103i-103j \\ -284+69i-69j & -490-103i+73j & 793 \end{pmatrix}$$

Property 2.2

Products of any two quaternion hermitian doubly stochastic matrices are also doubly stochastic. matrix but not a quaternion hermitian doubly Stochastic matrix. **PROOF:**

$$A = \begin{pmatrix} 1 & 2+i-j+k & -2-i+j-k \\ 2-i+j-k & 3 & -4+i-j+k \\ -2+i-j+k & -4-i+j-k & 7 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 2-i-k & -2+i+k \\ 2+i+k & 3 & -4-i-k \\ -2-i-k & -4+i+k & 7 \end{pmatrix}$$
$$AB = \begin{pmatrix} 5 & 18+2i+2j+2k & -22+6i+6j+6k \\ 18+2i+2k & 25 & -42+4i-6j+4k \\ -22+6i+6j+6k & -42-4i+2j+4k & 55 \end{pmatrix}$$

AB is not an quaternion hermitian doubly stochastic matrix.

Hence Products of any two quaternion hermitian doubly stochastic matrices are doubly stochastic matrix but not an quaternion hermitian doubly stochastic matrix.

Property 2.3

quaternion hermitian doubly stochastic matrices are not commutative. **PROOF:**

$$A = \begin{pmatrix} 1 & 2+i-j+k & -2-i+j-k \\ 2-i+j-k & 3 & -4+i-j+k \\ -2+i-j+k & -4-i+j-k & 7 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2-i-k & -2+i+k \\ 2+i+k & 3 & -4-i-k \\ -2-i-k & -4+i+k & 7 \end{pmatrix}$$

$$AB = \begin{pmatrix} 5 & 18+2i+2j+2k & -22+6i+6j+6k \\ 18+2i+2k & 25 & -42+4i-6j+4k \\ -22+6i+6j+6k & -42-4i+2j+4k & 55 \end{pmatrix}$$

$$BA = \begin{pmatrix} 5 & 18-2i-2k & 22+6i+6k \\ 18-2i-2j-2k & 25 & -42-4i-2j-4k \\ -22+6i-6j+6k & -42-4i+6j-4k & 65 \end{pmatrix}$$

 \Rightarrow AB \neq BA => quaternion hermitian doubly stochastic matrices are not commutative.

Property 2.4

If $A,B \in H^{n \times n}$ are quaternion hermitian doubly stochastic matrices. Then A+B = 2C where C is another quaternion hermitian doubly stochastic matrix.

PROOF:

$$A = \begin{pmatrix} 1 & 2+i-j & -2-i+j \\ 2-i+j & 3 & -4+i-j \\ -2+i-j & -4-i+j & 7 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 4+i-j & -5-i+j \\ 4-i+j & 2 & -5+i-j \\ -5+i-j & -5-i+j & 11 \end{pmatrix}$$

$$A+B = \begin{pmatrix} 3 & 6+2i-2j & -7-2i+2j \\ 6-2i+2j & 5 & -9+2i-2j \\ -7+2i-2j & -9-2i+2j & 18 \end{pmatrix}$$

$$A+B = 2C$$

$$2\begin{pmatrix} 3/2 & 3+i-j & -7/2-i+j \\ 3-i+j & 5/2 & -9/2+i-j \\ -7/2+i-j & -9/2-i+j & 9 \end{pmatrix}$$

$$C=\begin{pmatrix} 3/2 & 3+i-j & -7/2-i+j \\ 3-i+j & 5/2 & -9/2+i-j \\ -7/2+i-j & -9/2-i+j & 9 \end{pmatrix}$$

Theorem 2.4

Let A be a quaternion hermitian doubly stochastic matrix, then $\frac{1}{2}(A^*+A)$, where $[(A^*)^*=A]$ is quaternion hermitian doubly stochastic matrix.

Proof:
$$\frac{1}{2} [(A+A^*)]^* = \frac{1}{2} [A^* + (A^*)^*]$$

= $\frac{1}{2} (A^* + A)[(A^*)^* = A]$
=> $\frac{1}{2} (A+A^*)$ is quaternion hermitian doubly stochastic matrix.

Property 2.5

If $A \in H^{n \times n}$ is quaternion hermitian doubly stochastic matrix then $\frac{1}{2}(A+A^*)=A$.

EXAMPLE 1.3:

$$A = \begin{pmatrix} 1 & 2+i-j & -2-i+j \\ 2-i+j & 3 & -4+i-j \\ -2+i-j & -4-i+j & 7 \end{pmatrix}$$

$$A^* = \begin{pmatrix} 1 & 2-i+j & -2+i-j \\ 2+i-j & 3 & -4-i+j \\ -2-i+j & -4+i-j & 7 \end{pmatrix}$$

$$A^+A^* = \begin{pmatrix} 2 & 4 & -4 \\ 4 & 6 & -8 \\ -4 & -8 & 14 \end{pmatrix}$$

$$V_2(A+A^*) = 2A/2 = A.$$

$$= \begin{pmatrix} 2 & 4+2i-2j & -4-2i+2j \\ 4-2i+2j & 6 & -8+2i-2j \\ -4+2i-2j & -8-2i+2j & 14 \end{pmatrix}$$

$$= 2\begin{pmatrix} 1 & 2+i-j & -2-i+j \\ 2-i+j & 3 & -4+i-j \\ -2+i-j & -4-i+j & 7 \end{pmatrix}$$

property 2.6

if $A \in H^{n \times n}$ is quaternion hermitian doubly stochastic matrix then (A-A*) is null matrix. EXAMPLE 1.4:

A

$$A = \begin{pmatrix} 1 & 2+i-j+k & -2-i+j-k \\ 2-i+j-k & 3 & -4+i-j+k \\ -2+i-j+k & -4-i+j-k & 7 \end{pmatrix} A^{*} = \begin{pmatrix} 1 & 2+i+j+k & -2+i-j+k \\ 2+i-j+k & 3 & -4-i+j-k \\ -2-i+j-k & -4+i-j+k & 7 \end{pmatrix}$$

$$A - A^{*} ia a null matrix.$$

$$A - A^{*} = 0$$

$$A - A^{*} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Definition 2.2:[2]

A square matrix A is said to be an unitary quaternion hermitian doubly stochastic matrix if $AA^* = A^*A = I$.

Theorem 2.5

A be an unitary quaternion hermitian doubly stochastic matrix then A^* is also unitary quaternion hermitian doubly stochastic matrix.

Proof:

Since A is unitary quaternion hermitian doubly stochastic matrix, $AA^* = A^*A = I$. therefore $(A^*)^*A^* + A^*(A^*)^* \Rightarrow AA^* = A^*A.AA^* = A^*A = I \Rightarrow A^*$ is unitary quaternion hermitian doubly stochastic matrix.

Example: $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

References

- [1]. AnnLee. Secondary Symmetric and Skew Symmetric Secondary Orthogonal matrices period, math Hungary, 7, 63-70 (1976).
- [2]. Hill, R.D, and waters, S.R., on K real and K Hermitiam matrices, Lin.Alg. Appl., 169, 17 29 (1992).
- [3]. S.Krishnamoorthy, K.Guna sekaran and N.Mohana characterization and Theorems on Doubly stochastic matrices.
 [4]. G. Latouche, V. Ramaswami, Introduction to matrix Analytic methods inStochastic modeling, 1st edition. Chapter 2: PH
- Distributions; ASA SIAM, 1999.
 [5]. J. Medhi "stochastic process", New Age International (P) Ltd., Publishers (1982) 2nd edition.
- [6]. K. Gunasekaran, N.Mohana, "K-Symmetric Doubly Stochastic, S-Symmetric Doubly Stochastic and S-K-Symmetric Doubly Stochastic Matrices.

Dr.Gunasekaran K."Characterisation and Theorems on Quaternion Hermitian Doubly Stochastic Matrix: "International Journal of Engineering Science Invention (IJESI), vol. 07, no. 07, 2018, pp 01-06