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I. Introduction 
The concepts of quaternion hermitian doubly stochastic matrix are applied. In this paper,                     

[1, 4, 5, 6] the quaternion hermitian doubly stochastic matrix is developed in quaternion matrices. Denoted by 

A
T 

is the transpose of   A and A
*
 is the conjugate transpose of A. 

 

Definition 2.1 [3,2] 

 A matrix AH
n×n 

is said to be doubly stochastic if A* = A and 

1

1, 1,2,...n
n

ij

i

a j


   & 

1

1,i 1,2,...n
n

ij

i

a


   and all 0ija  . 

If A is doubly stochastic and also hermitian then it is called a quatemion hermitian doubly stochastic 

matrix.[QHDSM]   

Theorem 2.1  
Let A be a square matrix. Then A is quaternion hermitian Doubly stochastic iff  A = A*. 

Proof: 

 Let A = (aij) n×n  be quaternion hermitian doubly Stochastic matrix. 

Then aij = jia  for all i,j (i,j)
th 

 entry of   A =  aij = jia = 

 (j,i)
th

 entry of ( A ) = (j,i)
th

 entry of ( A )
T 

= A* => A=A*. 

suppose A=A*. then (i,j)
th 

entry of A= (i,j)
th

 entry of  ( A )
T 

 (i.e) aij = jia  for all i,j 

=> A is quaternion hermitian doubly Stochastic matrix. 

EXAMPLE 1.1: 

A = 

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
         

A*=  

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
       

 

Theorem 2.2 

If A and B are n×n quaternion hermitian doubly Stochastic matrices, then 
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(i) 
1

2
( A B ) = 

1

2
( A + B ) 

(ii) ( AB ) = A B . 

(iii) (AB)* = B*A*. 

(iv) 
1

2
(A+B)* = 

1

2
(A*+B*). 

(v) (KA)* = KA*, where K is scalar.are also quaternion hermitian doubly stochastic matrices. 

Proof: 

(i) Let A = (aij)n×n and B = (bij)n×n quaternion hermitian doubly matrices then 
1

2
(A+B) = (cij) is also n×n quaternion 

hermitian doubly  stochastic matrix where cij = aij+bij 

(i,j)
th

 entry of 
1

2
( A B ) = 

1

2
ijc  = 

1

2
( ij ija b ) = 

1

2
( ija + ijb ). 

=
1

2
      (i,j)

th 
entry of A + (i,j)

th
 entry of B         

 
1

2
( A B ) = 

1

2
( A + B ). 

(ii) Let A = (aij)n×n and B = (bij)n×n quaternion hermitian doubly matrices then AB = (cij) is an n×n quaternion 

hermitian doubly Stochastic matrix where cij = 

1

n

ik kj

k

a b


  

(i,j)
th

 entry of ( AB ) = ijc  = ( 1 1 2 2 ... )i j i j in nja b a b a b    

= ( 1 1i ja b + 2 2i ja b +…+ in nja b ) 

= 

1

n

k

 ika kjb  = (i,j)
th

 entry of ( A B )    AB AB   

(iii) Let A = (aij)n×n and B = (bij) n×n quaternion hermitian doubly matrices then 
1

2
(A+B) is an n×n quaternion 

hermitian doubly stochastic matrices. 

(i,j)
th

 entry of (AB)* = (j,i)
th 

 entry of  ( AB ).=(j,i)
th

 entry of ( A B ) = (i, j)
th

 entry of           [( B )
T
( A )

T
] = (i,j)

th
 

entry of B*A*   (AB)* = B*A*. 

(iv) Let A = (aij)n×n and B = (bij)n×n quaternion hermitian doubly matrices then 
1

2
(A+B) is an n×n quaternion 

hermitian doubly stochastic matrix. Since A* and B* are n×n quaternion            hermitian doubly Stochastic 

matrix. 

 Thus 
1

2
(A+B)* & 

1

2
( B*A*) are of same type. 

1

2
(i,j)

th
 entry of (A+B)* = 

1

2
(j,i)

th 
entry of ( A B ) =  

1

2
(j,i)

th
 entry of ( A B )=

1

2
(j,i)

th 
entry of [( A )

T
+( B

)
T
] =

1

2
(i,j)

th
 entry of (A*+B*). 

(v) Let A = (aij)n×n quaternion hermitian doubly stochastic matrix the (KA)n×n quaternion hermitian stochastic 

matrix and hence also (KA)
T

n×n quaternion hermitian stochastic matrix. 

Since (A*)n×n quaternion hermitian doubly stochastic matrix and also (KA*)n×n quaternion hermitian  stochastic 

matrix. Hence (KA)* and (KA*) are of the same type. 

Also (i,j)
th

 entry of (KA)* = (i,j)
th

 entry of ( KA ) = K j ia  [K is real, K = K] = K(j,i)
th

 entry of   A = K(i,j)
th
 

entry of (i,j)
th

 entry of K( A ) => (KA)* = KA*. 
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Where K is real. 

 

EXAMPLE 1.2: 

A = 

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
       

 

B = 

2 4 5

4 2 5

5 5 11

i j i j

i j i j

i j i j

     
 

     
       

 

Theorem 2.3 

if A and B are n×n quaternion hermitian doubly Stochastic matrices then 

(i) 
1

2
(A+B) is quaternion hermitian doubly Stochastic matrix. 

(ii) KA is quaternion hermitian Stochastic matrix, where K is real 

(iii) 
1

2
(AB+BA) is not an quaternion hermitian doubly Stochastic matrix. 

Proof: 

Since A* and B* are n×n quaternion hermitian doubly stochastic matrices then A=A* and B+B*. 

(i) 
1

2
(A+B)* =

1

2
 

T

A B = 
1

2
 

T

A B  =
1

2
[  

T

A +  
T

B  = 
1

2
(A*+B*) =

1

2
(A+B)=> 

1

2
(A+B) is quaternion 

hermitian doubly stochastic matrix. 

(ii) (KA)* =  ( KA )
T 

= ( K A )
T
 = (K A )

T
[K is real, K =K] = K( A )

T 
= KA* = KA, where K is real. 

 (KA) is hermitian stochastic matrix, where K is real. 

(iii) 
1

2
(AB+BA)* = 

1

2
[(AB)*+(BA)*] = 

1

2
(A*B*+B*A*) = 

1

2
(AB+BA) = 

1

2
(AB+BA) 

quaternions does not satisfy commute Property  

 
1

2
(AB+BA) is not an quaternion hermitian doubly Stochastic matrix. 

 

Property 2.1 

If AH
n×n 

is quaternion hermitian doubly stochastic matrix the A
n
 is also quaternion hermitian doubly 

stochastic matrix for 2n  . 

PROOF 

A = 

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
         

A
2
= 

13 14 4 4 26 8 8

14 4 4 33 46 10 10

26 8 8 46 10 10 73

i j i j

i j i j

i j i j

     
 

     
         

3

117 152 37 37 284 81 81

152 25 25 356 498 103 103

284 69 69 490 103 73

 

793

i j i j

i j i j

i j i j

A

     
 

     
      



  
Property 2.2 

              Products of any two quaternion hermitian doubly stochastic matrices are also doubly stochastic. matrix 

but not a quaternion hermitian doubly Stochastic matrix.     

PROOF: 
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A = 

1 2 2

2 3 4

2 4 7

i j k i j k

i j k i j k

i j k i j k

       
 

       
         

 

B = 

1 2 2

2 3 4

2 4 7

i k i k

i k i k

i k i k

     
 

     
       

 

AB = 

5 18 2 2 2 22 6 6 6

18 2 2 25 42 4 6 4

22 6 6 6 42 4 2 4 55

i j k i j k

i k i j k

i j k i j k

       
 

      
         

 

AB is not an quaternion hermitian doubly stochastic matrix. 

 Hence Products of any two quaternion hermitian doubly stochastic matrices are doubly stochastic 

matrix but not an quaternion hermitian doubly stochastic matrix. 

Property 2.3 

            quaternion hermitian doubly stochastic matrices are not commutative. 

PROOF: 

A = 

1 2 2

2 3 4

2 4 7

i j k i j k

i j k i j k

i j k i j k

       
 

       
         

 

B = 

1 2 2

2 3 4

2 4 7

i k i k

i k i k

i k i k

     
 

     
       

 

AB = 

5 18 2 2 2 22 6 6 6

18 2 2 25 42 4 6 4

22 6 6 6 42 4 2 4 55

i j k i j k

i k i j k

i j k i j k

       
 

      
           

BA = 

5 18 2 2 22 6 6

18 2 2 2 25 42 4 2 4

22 6 6 6 42 4 6 4 65

i k i k

i j k i j k

i j k i j k

    
 

       
         

 

 AB≠BA => quaternion hermitian doubly stochastic matrices are not commutative. 

Property 2.4     

                 If A,B H
n×n

 are quaternion hermitian doubly stochastic matrices. Then A+B = 2C where C is 

another quaternion hermitian doubly stochastic matrix. 

PROOF: 

A = 

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
       

 

B = 

2 4 5

4 2 5

5 5 11

i j i j

i j i j

i j i j

     
 

     
       

 

A+B =

3 6 2 2 7 2 2

6 2 2 5 9 2 2

7 2 2 9 2 2 18

i j i j

i j i j

i j i j
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A+B = 2C 

2

3 / 2 3 7 / 2

3 5 / 2 9 / 2

7 / 2 9 / 2 9

i j i j

i j i j

i j i j

     
 

     
       

 

C= 

3 / 2 3 7 / 2

3 5 / 2 9 / 2

7 / 2 9 / 2 9

i j i j

i j i j

i j i j

     
 

     
       

 

Theorem 2.4 

             Let A be a quaternion hermitian doubly stochastic matrix, then 
1

2
(A*+A), where [(A*)*=A] is 

quaternion hermitian doubly stochastic matrix. 

Proof: 
1

2
[(A+A*)]* = 

1

2
[A*+(A*)*] 

                 =
1

2
(A*+A)[(A*)*=A] 

                 =>
1

2
(A+A*) is quaternion hermitian doubly stochastic matrix. 

Property 2.5 

                If AH
n×n 

is quaternion hermitian doubly stochastic matrix then 
1

2
(A+A*)=A. 

EXAMPLE 1.3: 

A = 

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
       

 

A* = 

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
       

 

A+A* =

2 4 4

4 6 8

4 8 14

 
 

 
   

 

½(A+A*) = 2A/2 = A. 

=

2 4 2 2 4 2 2

4 2 2 6 8 2 2

4 2 2 8 2 2 14

i j i j

i j i j

i j i j

     
 

     
       

 

= 2

1 2 2

2 3 4

2 4 7

i j i j

i j i j

i j i j

     
 

     
       

 

property 2.6 

                 if A H
n×n 

is quaternion hermitian doubly stochastic matrix then (A-A*) is null matrix. 

EXAMPLE 1.4: 
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A= 

1 2 2

2 3 4

2 4 7

i j k i j k

i j k i j k

i j k i j k

       
 

       
         

A*= A 

A* = 

1 2 2

2 3 4

2 4 7

i j k i j k

i j k i j k

i j k i j k

       
 

       
         

 

A-A* ia a null matrix. 

A-A* = 0 

A-A* = 

0 0 0

0 0 0

0 0 0

 
 
 
 
 

 

Definition 2.2:[2] 

                A square matrix A is said to be an unitary quaternion hermitian doubly stochastic matrix if AA* = 

A*A = I. 

Theorem 2.5 

                A be an unitary quaternion hermitian doubly stochastic matrix then A* is also unitary quaternion 

hermitian doubly stochastic matrix. 

Proof: 

               Since A is unitary quaternion hermitian doubly stochastic matrix, AA* = A*A = I. therefore 

(A*)*A*+A*(A*)* => AA* = A*A.AA* = A*A=I =>A* is unitary quaternion hermitian doubly stochastic 

matrix. 

Example: A = 

0 1 0

1 0 0

0 0 1

 
 
 
 
 

 . 
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