Some Results on Fuzzy δ - Semi Precompactness

Runu Dhar

Department of Applied Mathematics Maharaja Bir Bikram University P.O.- Agartala College College Tilla, Agartala, Tripura, India PIN-799004 Corresponding Author: Runu Dhar

Abstract: The aim of this paper is to introduce and investigate the concept of a new class of compactness, namely fuzzy δ - semi precompactness in fuzzy topological spaces. Some of their basic properties in fuzzy topological spaces are also to be investigated.

Key words: Fuzzy topological space, fuzzy δ - semi preopen set, fuzzy δ - semi preopen cover, fuzzy δ - semi precompactness.

AMS Subject classification: 54A 40.

Date of Submission: 29-07-2018 Date of acceptance: 22-08-2018

I. Introduction

The concept of fuzzy sets was introduced by Prof. L. A. Zadeh [11] in 1965. Realizing the potentiality of introduced notion of fuzzy sets, the researchers successfully applied it for investigations in all the branches of science and technology. In 1968, C. L. Chang [4] introduced the notion of fuzzy topology. S. S. Thakur and S. Singh [9] introduced the concept of fuzzy semi precompactness in fuzzy topological spaces. Also S. Debnath [5] introduced the concept of fuzzy δ - semi compactness. In this paper, the concept of a new kind of fuzzy compactness and some of its basic properties would be investigated in fuzzy setting. Throughout this paper, (X, τ) or simply X will mean a fuzzy topological space (fts, in short) due to Chang [4].

II. Preliminaries

In this section, some known results and definitions are given.

Definition 2.1. A fuzzy subset A of a fuzzy topological space (X, τ) is called

- (a) [1] fuzzy semiopen if $A \leq cl(int(A))$,
- (b) [2] fuzzy preopen if $A \leq int(cl(A))$,
- (c) [8] fuzzy semi preopen if $A \le cl(int(cl(A)))$,
- (d) [6] fuzzy δ closed if and only if A = $\delta cl(A)$ and the complement of fuzzy δ closed set is called fuzzy δ open,
- (e) [7] fuzzy δ semiopen if $A \leq cl(\delta int(A))$,
- (f) [3] fuzzy δ preopen if $A \leq int(\delta cl(A))$,
- (g) [10] fuzzy δ semi preopen if $A \le \delta cl(int\delta cl(A))$, equivalently, if there exists a fuzzy δ preopen set B such that $B \le A \le \delta cl(B)$. The set of all fuzzy δ semi preopen sets on X is denoted by F δ SPO(X).

Definition 2.2. [4] A fuzzy topological space (X, τ) is fuzzy compact if and only if each fuzzy open covering of X has a finite subcover.

Definition 2.3. [9] A collection $\{B_i : i \in J\}$ of fuzzy preopen sets in a fuzzy topological space (X, τ) is called a fuzzy semi preopen cover of a fuzzy set A of X if $A \leq \lor \{B_i : i \in J\}$.

Definition 2.4. [9] A fuzzy topological space (X, τ) is said to be fuzzy semi precompact if every fuzzy semi preopen cover of X has a finite subcover.

Definition 2.5. [5] A fuzzy topological space (X, τ) is said to be fuzzy δ - semi compact if every fuzzy δ - semi open covering of X has a finite subcover.

III. Fuzzy δ - semi precompactness

In this section, the concept of fuzzy δ - semi precompactness in fuzzy topological spaces is to be introduced. Also some of its fundamental properties are to be investigated in fuzzy setting.

Definition 3.1. A collection $\{A_i : i \in J\}$ of fuzzy δ - preopen sets in a fuzzy topological space (X, τ) is called a fuzzy δ - semi preopen cover of a fuzzy set B of X if $B \leq \lor \{A_i : i \in J\}$.

Definition 3.2. A fuzzy topological space (X, τ) is said to be fuzzy δ - semi precompact if every fuzzy δ - semi preopen cover of X has finite subcover.

Remark 3.3. Every fuzzy δ - semiopen cover and fuzzy δ - preopen cover is a fuzzy δ - semi preopen cover. But the converse is not true in general.

Theorem 3.4. Every fuzzy δ - semi precompact space is fuzzy δ - semi compact space.

Proof. Let (X, τ) be a fuzzy δ - semi precompact and let the collection $V = \{A_i : i \in J\}$ be a fuzzy δ - semi open cover of X.

Since $\sup_{i \in J} \{ B_{Ai}(x) = 1 \}$, then $X = \lor A_{i.}$

By Remark 3.3., the collection V is a fuzzy δ - semi preopen cover of a fuzzy δ - semi precompact space (X, τ) . Therefore, X has a finite subcover which belongs to $V = \{A_i : i \in J\}$. Hence (X, τ) is a fuzzy δ - semi compact space.

Theorem 3.5. Every fuzzy δ - semi precompact space is fuzzy δ - precompact space.

Proof. Let (X, τ) be a fuzzy δ - semi precompact and let the collection $V = \{A_i : i \in J\}$ be a fuzzy δ - preopen cover of X.

Since $\sup_{i \in J} \{ B_{Ai}(x) = 1 \}$, then $X = \lor A_{i.}$

By Remark 3.3., the collection V is a fuzzy δ - semi preopen cover of a fuzzy δ - semi precompact space (X, τ) . Therefore, X has a finite sub cover which belongs to $V = \{A_i : i \in J\}$. Hence (X, τ) be a fuzzy δ - precompact space.

Remark 3.6. A fuzzy δ - semi compact (δ - precompact) space need not be fuzzy δ - semi precompact space.

Theorem 3.7. Every fuzzy δ - semi preclosed subset of a fuzzy δ - semi precompact space is fuzzy compact.

Proof. Let (X, τ) be a fuzzy δ - semi precompact space and F be a fuzzy δ - semi preclosed set of X. It is required to show that F is compact.

Let $V = {A_i : i \in J}$ be a fuzzy open cover of F in X.

Since F is a subset of a collection of V, then $\mu_F(x) \leq \sup_{i \in I} {\{\mu_{Ai}(x)\}}$.

Hence V is a δ - semi preopen cover of F.

F is fuzzy δ - semi preclosed subset of X, F^c is fuzzy δ - semi preopen subset of X.

Therefore, the collection $\{A_i : i \in J\} \cup \{F^c\}$ is fuzzy δ - semi preopen cover of X which is fuzzy δ - semi precompct space. Then there exists finitely many members of J say, i_1, i_2, \ldots, i_n such that

$$\begin{split} X &= \bigcup_{i=1}^{n} A_i \bigcup \{F^c\}.\\ \text{i.e., } X \text{ has two finite subcovers, say, } \{A_1, A_1, \ldots, A_n\} \text{ and } \{F^c\}.\\ \text{Since } \mu_F(x) &\leq 1, \text{ then } F \subseteq X \text{ and } F^c \text{ covers no part of } X.\\ \text{Hence } \mu_F(x) &\leq Max \{\mu_{Ai}(x)\}.\\ \text{Therefore, } F \subseteq \bigcup_{i=1}^{n} A_i\\ \text{Hence } F \text{ is fuzzy compact.} \end{split}$$

Theorem 3.8. A fuzzy topological space (X, τ) is fuzzy δ - semi precompact if and only if every family of fuzzy δ - semi preclosed subsets of X with finite intersection property has a non - empty intersection.

Proof.

Necessary part.

Let $F = \{A_i : i \in J\}$ be any family of fuzzy δ - semi preclosed subsets of X with finite intersection property. Then the collection $U = \{1_X - A_i : i \in J\}$ is a fuzzy δ - semi preopen cover of X. We assert that no finite subfamily of U covers X. For, let $\{1_X - A_i : i = 1, 2, ..., n\}$ be any non - empty finite subfamily of U. Then $1_X - \vee \{1_X - A_i : i = 1, 2, ..., n\} = \wedge \{A_i : i = 1, 2, ..., n\} \neq 0_X$ since by hypothesis F has the finite intersection property. This implies that $\vee \{1_X - A_i : i = 1, 2, ..., n\} \neq 1_X$. Since X is fuzzy δ - semi precompact it follows that U does not cover X. Hence $\lor \{1_X - A_i : i \in J\} \neq 1_X$. Consequently, we obtain that $1_X - \land \{A_i : i \in J\} \neq 1_X$. Thus $\land \{A_i : i \in J\} \neq 0_X$.

Sufficient part.

Suppose that every family of fuzzy δ - semi preclosed subset of X with finite intersection property has non empty intersection. Let $\{A_i : i \in J\}$ be a fuzzy δ - semi preopen cover of X. Then $F = \{1_X - A_i : i \in J\}$ is a family of fuzzy δ - semi preclosed set in X whose intersection is empty. Therefore, by supposition F does not possess the finite intersection property. And, so there is a finite subfamily say, $\{1_X - A_i : i = 1, 2, ..., n\}$ of F with empty intersection. This implies that $\lor \{A_i : i = 1, 2, ..., n\} = 1_X$. It follows that X is fuzzy δ - semi precompact.

Theorem 3.9. Let (X, τ) be a fuzzy topological space and τ_{ζ} be a fuzzy topology on X which has F δ SPO(X) as a subbase. Then (X, τ) is fuzzy δ - semi precompact if and only if (X, τ_{ζ}) is fuzzy compact.

Proof. Obvious.

Theorem 3.10. Let (X, τ) be a fuzzy topological space which is fuzzy δ - semi precompact, then each τ_{ζ} - fuzzy closed set in X is fuzzy δ - semi precompact.

Proof. Let A be any τ_{ζ} - fuzzy closed set in X and $\{\mu_{Bi}: B_i \in J\}$ be a τ_{ζ} - fuzzy open cover of A. Since $1_X - A$ is τ_{ζ} - fuzzy open, $\{\mu_{Bi}: B_i \in J\} \lor \{1_X - A\}$ is a τ_{ζ} - fuzzy open cover of X. Since by theorem 3.9., X is τ_{ζ} - compact, there exists a finite subset J_0 of J such that $1_X \le \lor \{\mu_{Bi}: B_i \in J_0\} \lor \{1_X - A\}$. This implies that $A \le \lor \{\mu_{Bi}: B_i \in J_0\}$. Hence A is δ - semi precompact relative to X and this completes the proof.

Theorem 3.11. Let the fuzzy topological space (X, τ) be fuzzy δ - semi precompact. Then every family of τ_{ζ} -fuzzy closed subsets of X with finite intersection property has non - empty intersection.

Proof. Let X be fuzzy δ - semi precompact. Let $F = \{\mu_{Bi} : B_i \in J\}$ be any family of τ_{ζ} - fuzzy closed subsets of X with finite intersection property. Suppose $\land \{\mu_{Bi} : B_i \in J\} = 0_X$. Then $\{1_{X-} \mu_{Bi} : B_i \in J\}$ is a τ_{ζ} - fuzzy open cover of X. Hence it must contain a finite subcover $\{1_{X-} \mu_{Bij} : j = 1, 2, ..., n\}$ for X. This implies that $\land \{\mu_{Bij} : j = 1, 2, ..., n\} = 0_X$ which contradicts the assumption that F has a finite intersection property.

Definition 3.12. Let (X, τ) and (Y, σ) be two fuzzy topological spaces and let τ_{ζ} be a fuzzy topology on X which has F δ SPO(X) as a subbase. A mapping $f : (X, \tau) \to (Y, \sigma)$ is called fuzzy ζ_{δ} – continuous if $f : (X, \tau_{\zeta}) \to (Y, \sigma)$ is fuzzy continuous.

Definition 3.13. Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let τ_{ζ} and σ_{ζ} be respectively the fuzzy topologies on X and Y which have F\deltaSPO(X) and F\deltaSPO(Y) as subbases. A mapping $f : (X, \tau) \to (Y, \sigma)$ is called fuzzy ζ_{δ} – continuous if $f : (X, \tau_{\zeta}) \to (Y, \sigma_{\zeta})$ is fuzzy continuous.

Theorem 3.14. Let (X, τ) and (Y, σ) be two fuzzy topological spaces and let τ_{ζ} be a fuzzy topology on X which has F δ SPO(X) as a subbase. If $f : (X, \tau) \to (Y, \sigma)$ is fuzzy δ – semi precontinuous, then f is fuzzy ζ_{δ} – continuous.

Proof. Let f be fuzzy δ – semi precontinuous and let $B \in \sigma$. Then $f^{-1}(B) \in F\delta SPO(X)$. So $f^{-1}(B) \in \tau_{\zeta}$. Thus f is fuzzy ζ_{δ} – continuous.

Theorem 3.15. Let (X, τ) and (Y, σ) be two fuzzy topological spaces and let $f : (X, \tau) \to (Y, \sigma)$ be fuzzy ζ_{δ} – continuous. If a fuzzy subset A of X is fuzzy δ – semi precompact relative to X, then f(A) is fuzzy δ – semi precompact relative to Y.

Proof. Let $\{\mu_{\beta_i}: \beta_i \in \Lambda\}$ be a cover of f(A) by σ_{ζ} - fuzzy open set in Y. Then $\{f^{-1}(\mu_{\beta_i}): \beta_i \in \Lambda\}$ is a cover of A of τ_{ζ} – fuzzy open set in X and A is fuzzy δ – semi precompact relative to X. Again f is fuzzy ζ_{δ} – continuous. So $f: (X, \tau_{\zeta}) \rightarrow (Y, \sigma_{\zeta})$ is fuzzy continuous and (X, τ_{ζ}) is fuzzy compact. Hence A is τ_{ζ} – fuzzy compact. So there exists a finite subset Λ_0 of Λ such that $A \leq \vee \{f^{-1}(\mu_{\beta_i}): \beta_i \in \Lambda_0\}$ and so $f(A) \leq \{\mu_{\beta_i}: \beta_i \in \Lambda_0\}$. Hence by theorem 3.9., f(A) is τ_{ζ} – fuzzy compact relative to Y. Thus f(A) is fuzzy δ – semi precompact relative to Y. **Corollary 3.16.** Let (X, τ) and (Y, σ) be two fuzzy topological spaces and let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy ζ_{δ} – continuous surjection. If X is fuzzy δ – semi precompact then Y is fuzzy δ – semi precompact.

Proof. Since f is fuzzy ξ_{δ} – continuous and X is fuzzy δ – semi precompact. So f : $(X, \tau_{\zeta}) \rightarrow (Y, \sigma_{\zeta})$ is fuzzy continuous and (X, τ_{ζ}) is fuzzy compact. This implies that (Y, σ_{ζ}) is fuzzy compact because f is surjective. Hence by theorem 3.9., Y is fuzzy δ – semi precompact.

Theorem 3.17. Let (X, τ) and (Y, σ) be two fuzzy topological spaces and let $f : (X, \tau) \to (Y, \sigma)$ be fuzzy ζ_{δ} – continuous. If a fuzzy subset A of X is fuzzy compact relative to X, then f(A) is fuzzy δ – semi precompact relative to Y.

Proof. Obvious.

Theorem 3.18. Let (X, τ) and (Y, σ) be two fuzzy topological spaces and let $f : (X, \tau) \to (Y, \sigma)$ be fuzzy ζ_{δ} – continuous surjection. If X is fuzzy compact then Y is fuzzy δ – semi precompact.

Proof. Obvious.

Theorem 3.19. Let A and B be two fuzzy subsets of a fuzzy topological space (X, τ) such that A is fuzzy δ – semi precompact relative to X and B is τ_{ζ} – closed fuzzy set in X. Then A \wedge B is fuzzy δ – semi precompact relative to X.

Proof. Let $\{\mu_{\beta_i}: \beta_i \in \Lambda\}$ be a cover of $A \wedge B$ by τ_{ζ} – fuzzy subsets of X. Since $1_X - A$ is τ_{ζ} – fuzzy open set, $\{\mu_{\beta_i}: \beta_i \in \Lambda\} \lor (1_X - A)$ is fuzzy open cover of A. Since is fuzzy δ – semi precompact, it is τ_{ζ} – fuzzy compact relative to X. Hence there exists a finite subset Λ_0 of Λ such that $A \leq \lor \{\mu_{\beta_i}: \beta_i \in \Lambda_0\}$. Hence $A \wedge B$ is τ_{ζ} – fuzzy compact. Therefore $A \wedge B$ is fuzzy δ – semi precompact relative to X.

References

- [1]. K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal.Appl. 82 (1981) 14 32.
- [2]. A. S. Bin Shahana, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303 308.
- [3]. M. Caldas, S. Jafari, R. K. Saraf, Fuzzy (δ, P) T₁ Topological spaces, J. Tri. Math. Soc. 9 (2008) 1-4.
- [4]. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [5]. S. Debnath, Fuzzy δ semi continuous functions, Acta Ciencia Indica, Vol.XXXIV, M, No. 2 (2008) 697 703.
- [6]. S. Ganguly, S. Saha, A note on δ continuity and δ connected sets in fuzzy set theory, Simon Stevin 62 (1988) 127 141.
- [7]. A. Mukherjee, S. Debnath, On δ semiopen sets in Fuzzy Setting, J. Tri. Math. Soc. 8 (2006) 51-54.
- [8]. S. S. Thakur, S. S. Singh, On fuzzy semi preopen sets and fuzzy semi precontinuity, Fuzzy Sets and Systems 98 (1998) 383 391.
- [9]. S. S. Thakur, S. Singh, Fuzzy semi precompactness, J. Tri. Math. Soc. 1 (1999) 53 57.
- [10]. S. S. Thakur, R. K. Khare, Fuzzy semi δ preopen sets and fuzzy semi δ pre continuous mappings, Universitatea din Bacau studii si cerceturi Strintitice Seria Mathematica 14 (2004) 201 - 211.
- [11]. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338 353.