Non-Homogeneous Bi-Quadratic Equation With Three

 Unknowns $x^{2}+3 x y+y^{2}=z^{4}$Shreemathi Adiga ${ }^{1 *}$, N. Anusheela ${ }^{2}$ And M.A. Gopalan ${ }^{3}$
${ }^{\text {I*Assistant Professor, Department of Mathematics, Government First Grade College, Koteshwara, Kundapura }}$ Taluk, Udupi - 576 222, Karnataka, India.
${ }^{2}$ Assistant Professor, Department of Mathematics, Government Arts College, Udhagamandalam, The Nilgiris643 002, India.
${ }^{3}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India. Corresponding Author: Shreemathi Adiga

Abstract

We obtain infinitely many non-zero integer triples (x, y, z) satisfying the non-homogeneous biquadratic equation with three unknowns $x^{2}+3 x y+y^{2}=z^{4}$. Various interesting properties among the values of x, y, z are presented.

Keywords: Ternary bi-quadratic, Integer solutions.

I. Introduction

The theory of Diophantine equations offers a rich variety of fascinating problems. There is a great interest for mathematicians since antiquity in homogeneous and non-homogeneous bi-quadratic Diophantine equations [1-4]. In this context, one may refer [5-10] for varieties of problems on the bi-quadratic Diophantine equations with three variables. In [11-15], bi-quadratic equation with four unknowns are studied for their integral solutions. This communication concerns with yet another interesting ternary bi-quadratic equation given by $x^{2}+3 x y+y^{2}=z^{4}$ and is analysed for its non-zero distinct integer solutions. Also, a few interesting relations between the solutions are presented.

II. Method of analysis

The ternary bi-quadratic Diophantine equation to be solved for its non-zero distinct integral solutions is given by $x^{2}+3 x y+y^{2}=z^{4}$
Introducing the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v \tag{2}
\end{equation*}
$$

in (1) leads to
$5 u^{2}-v^{2}=z^{4}$
We present below different methods of solving (3) and thus obtain different patterns of integral solutions to (1).

PATTERN: 1

One may write (3) as
$5 u^{2}=v^{2}+\left(z^{2}\right)^{2}$
Assume $u=u(a, b)=a^{2}+b^{2}$
Write 5 as

$$
5=(2+i)(2-i)
$$

Substituting (5) and (6) in (4) and employing the method of factorization, define

$$
v+i z^{2}=(2+i)(a+i b)^{2}
$$

Equating real and imaginary parts, we have

$$
\begin{align*}
& v=2\left(a^{2}-b^{2}\right)-2 a b \tag{7}\\
& z^{2}=a^{2}-b^{2}+4 a b \tag{8}
\end{align*}
$$

The solution to (8) is

Non-Homogeneous Bi-Quadratic Equation With Three Unknowns $x^{2}+3 x y+y^{2}=z^{4}$

$$
\left.\begin{array}{l}
a=5 p^{2}+q^{2}-4 p q \\
b=2 p q \tag{10}\\
z=5 p^{2}-q^{2}
\end{array}\right\}
$$

Substituting (9) in (5) and (7), we get
$u=25 p^{4}+q^{4}+30 p^{2} q^{2}-8 p q^{3}-40 p^{3} q$
$v=50 p^{4}+2 q^{4}+60 p^{2} q^{2}-20 p q^{3}-100 p^{3} q$
In view of (2), we have
$\left.\begin{array}{l}x=75 p^{4}+3 q^{4}+90 p^{2} q^{2}-28 p q^{3}-140 p^{3} q \\ y=-25 p^{4}-q^{4}-30 p^{2} q^{2}+12 p q^{3}+60 p^{3} q\end{array}\right\}$
Thus (10) and (11) represents non zero distinct integer solutions to (1).

Properties:

$$
\begin{aligned}
& \text { 1. } 3\left(t_{4, q}\right)^{2}-x(1, q)-14 S O_{q}+90 \mathrm{Pr}_{q}+75 \equiv 0(\bmod 2) \\
& \text { 2. } x(1, q)+3 y(1, q)-12 O H_{q} \equiv 0(\bmod 2) \\
& \text { 3. } x(q, q)+3 y(q, q)-48\left(t_{4, q}\right)=0
\end{aligned}
$$

PATTERN: 2

Rewrite (8) as

$$
\begin{align*}
& (a+2 b)^{2}-5 b^{2}=z^{2} \\
& (a+2 b)^{2}=5 b^{2}+z^{2} \\
& 5 b^{2}+z^{2}=(a+2 b)^{2} * 1 \tag{12}
\end{align*}
$$

Assume $a+2 b=\alpha^{2}+5 \beta^{2}$
Write 1 as

$$
\begin{equation*}
1=\frac{(2+i \sqrt{5})(2-i \sqrt{5})}{9} \tag{14}
\end{equation*}
$$

Substituting (13) \& (14) in (12) and employing the method of factorization, define

$$
z+i \sqrt{5} b=\frac{1}{3}(2+i \sqrt{5})(\alpha+i \sqrt{5} \beta)^{2}
$$

Equating the real and imaginary parts, we have
$\left.\begin{array}{l}z=\frac{1}{3}\left(2 \alpha^{2}-10 \beta^{2}-10 \alpha \beta\right) \\ b=\frac{1}{3}\left(4 \alpha \beta+\alpha^{2}-5 \beta^{2}\right)\end{array}\right\}$
As our interest is on finding integer solutions, replacing α by $3 P$ and β by $3 Q$ in (13) and (15), we get

$$
\left.\begin{array}{l}
a=3 P^{2}+75 Q^{2}-24 P Q \\
b=3 P^{2}-15 Q^{2}+12 P Q
\end{array}\right\}
$$

Substituting (16) in (5) and (7), we get

$$
\begin{aligned}
& u=18 P^{4}+5850 Q^{4}+1080 P^{2} Q^{2}-3960 P Q^{3}-72 P^{3} Q \\
& v=-18 P^{4}+13050 Q^{4}+2160 P^{2} Q^{2}-9000 P Q^{3}-360 P^{3} Q
\end{aligned}
$$

In view of (2), we have

$$
\left.\begin{array}{l}
x=18900 Q^{4}+3240 P^{2} Q^{2}-12960 P Q^{3}-432 P^{3} Q \tag{18}\\
y=36 P^{4}-7200 Q^{4}-10800 P^{2} Q^{2}+5040 P Q^{3}+288 P^{3} Q
\end{array}\right\}
$$

Thus (17) and (18) represents non zero distinct integer solutions to (1).

$$
\text { Non-Homogeneous Bi-Quadratic Equation With Three Unknowns } x^{2}+3 x y+y^{2}=z^{4}
$$

Properties:

$$
\begin{aligned}
& \text { 1. } y(P, 1)-36\left(t_{4, P}\right)^{2}-144 S O_{P}+1080 \operatorname{Pr}_{P}+7200 \equiv 0(\bmod 2) \\
& \text { 2. } z(1, Q)+30 \operatorname{Pr}_{Q} \equiv 0(\bmod 2) \\
& \text { 3. } x(P,-P)-9612\left(t_{4, P}\right)=0
\end{aligned}
$$

PATTERN: 3

In addition to (14), one may write 1 as
$1=\frac{(2+i 3 \sqrt{5})(2-i 3 \sqrt{5})}{49}$
Substituting (13) \& (19) in (12) and employing the method of factorization define
$z+i \sqrt{5} b=\frac{1}{7}(2+i 3 \sqrt{5})(\alpha+i \sqrt{5} \beta)^{2}$
Equating the real and imaginary parts, we have
$\left.\begin{array}{l}z=\frac{1}{7}\left(2 \alpha^{2}-10 \beta^{2}-30 \alpha \beta\right) \\ b=\frac{1}{7}\left(4 \alpha \beta+3 \alpha^{2}-15 \beta^{2}\right)\end{array}\right\}$
As our interest is on finding integer solutions, replacing α by $7 P$ and β by $7 Q$ in (13) and (20), we get
$\left.a=7 P^{2}+455 Q^{2}-56 P Q\right\}$
$\left.b=21 P^{2}-105 Q^{2}+28 P Q\right\}$
$z=14 P^{2}-70 Q^{2}-210 P Q$
Substituting (21) in (5) and (7), we get
$u=490 P^{4}+218050 Q^{4}+5880 P^{2} Q^{2}-56840 P Q^{3}+392 P^{3} Q$
$v=-1078 P^{4}+487550 Q^{4}+11760 P^{2} Q^{2}-127400 P Q^{3}-1960 P^{3} Q$
In view of (2), we have
$\left.\begin{array}{l}x=-588 P^{4}+705600 Q^{4}+17640 P^{2} Q^{2}-184240 P Q^{3}-1568 P^{3} Q \\ y=1568 P^{4}-269500 Q^{4}-5880 P^{2} Q^{2}+70560 P Q^{3}+2352 P^{3} Q\end{array}\right\}$
Thus (22) and (23) represents non zero distinct integer solutions to (1).

Properties:

1. $z(P, 1)-t_{30, P}+70 \equiv 0(\bmod 197)$
2. $y(P, 1)-1568\left(t_{4, P}\right)^{2}-1176 O H_{P}+5880 \operatorname{Pr}_{P}+269500 \equiv 0(\bmod 2)$
3. $x(1, Q)-705600\left(t_{4, Q}\right)^{2}+92120 \mathrm{SO}_{Q}-17640 \mathrm{Pr}_{Q}+588 \equiv 0(\bmod 2)$

NOTE:

It is worth to note that in addition to (14), one may write 1 as
$1=\frac{(1+i 4 \sqrt{5})(1-i 4 \sqrt{5})}{81}$
Following the procedure as presented above, the corresponding non-zero distinct integer solutions to (1) are given by

$$
\begin{aligned}
& \quad x=-1701 P^{4}+1998675 Q^{4}+7290 P^{2} Q^{2}-199260 P Q^{3}-972 P^{3} Q \\
& y=4455 P^{4}-763425 Q^{4}-2430 P^{2} Q^{2}+76140 P Q^{3}+2268 P^{3} Q \\
& z=9 P^{2}-45 Q^{2}-360 P Q
\end{aligned}
$$

Properties:

1. $z(P, 1)-t_{20, P}+45 \equiv 0(\bmod 2)$
2. $x(P, P)+y(P, P)-1121040\left(t_{4, P}\right)^{2}=0$

$$
\text { Non-Homogeneous Bi-Quadratic Equation With Three Unknowns } x^{2}+3 x y+y^{2}=z^{4}
$$

3. $x(P, 1)+1701\left(t_{4, P}\right)^{2}+486 S O_{P}-7290 \operatorname{Pr}_{P}-1998675 \equiv 0(\bmod 2)$

References

[1]. L.J. Mordell, Diophantine Equations, Academic press, New York, 1969.
[2]. R.D. Carmichael, The Theory of numbers and Diophantine Analysis, Dover publications, New York, 1959.
[3]. L.E. Dickson, History of theory of Numbers, Diophantine Analysis, Vol.2, Dover publications, New York, 2005.
[4]. S.G. Telang, Number Theory, Tata Mc Graw Hill publishing company, New Delhi, 1996.
[5]. M.A. Gopalan, S. Vidhyalakshmi, S. Devibala, Ternary bi-quadratic Diophantine equation $2^{4 n+3}\left(x^{3}-y^{3}\right)=z^{4}$, Impact J. Sci. Tech, 4(3), 2010, 57-60.
[6]. M.A. Gopalan, G. Sangeetha, Integral solutions of ternary non-homogeneous bi-quadratic equation $x^{4}+x^{2}+y^{2}-y=z^{2}+z$, Acta Ciencia Indica, Vol. XXXVIIM, No.4, 2011, 799-803.
[7]. M.A. Gopalan, S. Vidhyalakshmi, G. Sumathi, Integral solutions of ternary bi-quadratic non-homogeneous equation $(\alpha+1)\left(x^{2}+y^{2}\right)+(2 \alpha+1) x y=z^{4}$, JARCE, Vol.6(2), July-December 2012, 97-98.
[8]. M.A. Gopalan, G. Sumathi, S. Vidhyalakshmi, Integral solutions of ternary non-homogeneous bi-quadratic equation $(2 k+1)\left(x^{2}+y^{2}+x y\right)=z^{4}$, Indian Journal of Engineering, Vol.1(1), 2012, 37-39.
[9]. M.A. Gopalan, G. Sumathi, S. Vidhyalakshmi, On the ternary bi-quadratic non-homogeneous equation $x^{2}+n y^{3}=z^{4}$, Cayley J.Math, Vol.2(2), 2013, 169-174.
[10]. A. Vijayasankar, M.A. Gopalan, V. Kiruthika, On the bi-quadratic Diophantine equation with three unknowns $7\left(x^{2}-y^{2}\right)+x+y=8 z^{4}$, International Journal of Advanced Scientific and Technical Research, Volume 1, Issue 8, JanuaryFebruary 2018, 52-57.
[11]. M.A. Gopalan, B. Sivakami, Integral solutions of Quartic equation with four unknowns $x^{3}+y^{3}+z^{3}=3 x y z+2(x+y) w^{3}$, Antartica J. Math., 10 (2), 2013, 151-159.
[12]. M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi, On the bi-quadratic equation with four unknowns $x^{2}+x y+y^{2}=\left(z^{2}+z w+w^{2}\right)^{2}$, IJPAMS, 5 (1), 2012, 73-77.
[13]. M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha, Integral solutions to the bi-quadratic equation with four unknowns $(x+y+z+w)^{2}=x y z w+1, \operatorname{IOSR}, \operatorname{Vol} .7(4), 2013,11-13$.
[14]. K. Meena, S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam, On the bi-quadratic equation with four unknowns $x^{3}+y^{3}=39 z w^{3}$, International Journal of Engineering Research Online, Vol. 2(1), 2014, 57-60.
[15]. M.A. Gopalan, V. Sangeetha, Manju Somanath, Integer solutions of non-homogeneous biquadratic equation with four unknowns $4\left(x^{3}-y^{3}\right)=31\left(k^{2}+3 s^{2}\right) z w^{2}$, Jamal Academic Research Journal, Special Issue, 2015, 296-299.

[^0]
[^0]: Shreemathi Adiga "Non-Homogeneous Bi-Quadratic Equation With Three Unknowns $x^{2}+3 x y+y^{2}=z^{4}$. "International Journal of Engineering Science Invention (IJESI), vol. 07, no. 08, 2018, pp 26-29

