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Abstract—Wireless-sensor networks (WSNs) are networks of au- 

tonomousnodesusedformonitoringanenvironment.DevelopersofWSNs face challenges that arise from 

communication link failures, memory and computational constraints, and limited energy. Many issues in WSNs 

are formulated as multidimensional optimization problems, and approached through bioinspired techniques. 

Particle swarm optimization (PSO) is a simple, effective, and computationally efficient optimization algorithm. 

IthasbeenappliedtoaddressWSNissuessuchasoptimaldeployment,nodelocalization,clustering,anddataaggregation

.ThispaperoutlinesissuesinWSNs,introducesPSO,anddiscussesitssuitabilityforWSNapplications.Italsopresentsabr

iefsurveyofhowPSOistailoredtoaddresstheseissues. 

Index Terms—Clustering, data aggregation, localization, optimal de- ployment, particle swarm optimization 

(PSO), Wireless-sensor networks (WSNs). 

 

I. Introduction 
WIRELESSSENSORnetworks(WSNs)areanemergingtechnology[1]thathaspotentialapplicationsinsurveillance,en

vironmentandhabitatmonitoring,structuralmonitoring,healthcare,anddisastermanagement[2].AWSNmonitorsane

nvironmentbysensingitsphysicalproperties.Itisanetworkoftiny,inexpensiveautonomousnodesthatcanacquire,proce

ss,andtransmitsensorydataoverwirelessmedium.Oneormorepowerfulbasestationsserveasthefinaldestina-

tionofthedata.ThepropertiesofWSNsthatposetechnicalchallengesincludedenseadhocdeployment,dynamictopolog

y,spatialdistribu-tion, and constrains in bandwidth, memory, computationalresources,and energy. 

WSN issues such as node deployment, localization, energy-aware clustering, and data aggregation are often 

formulated as optimization problems.Traditionalanalyticaloptimizationtechniquesrequireenor- 

mouscomputational efforts, whichgrowexponentiallyastheproblem size increases. An optimization method that 

requires moderate mem- ory and computational resources and yet produces good results is de- sirable, especially 

for implementation on an individual sensor node. Bioinspired optimization methods are computationally 

efficient alter- natives to analytical methods. Particle swarm optimization (PSO) is  a popular multidimensional 

optimization technique [3]. Ease of im- plementation, high quality of solutions, computational efficiency, and 

speed of convergence are strengths of the PSO. Literature is replete with applications of PSO in WSNs. The 

objective of this paper is to giveaflavorofPSOtoresearchersinWSNandtogiveaqualitativetreatment of 

optimization problems in WSNs to PSO researchers in order to promote PSO in WSN applications. 

The rest of this paper is organized as follows: PSO and its rel- ative advantages are briefly outlined in Section II. 

SectionsIIIVIdiscussapplicationsofPSOinoptimaldeployment,localization,clustering,anddataaggregation(alsorefe

rredtoasdatafusion).Ineachof these sections, a specific WSN issue is introduced and a briefdescrip- 

tionofhowPSOisappliedtoaddresstheparticularissueispresented. 

Finally,aprojectionoffuturePSOapplicationsinWSNsandconclud- ing remarks are given in SectionVII. 

 

PSO: A BRIEFOVERVIEW 

A. PSOAlgorithm 

PSOmodelssocialbehaviorofaflockofbirds[3].Itconsistsofaswarmofscandidatesolutionscalledparticles,which

exploreanndimensionalhyperspaceinsearchoftheglobalsolution(nrepresentsthenumberofoptimalparameterst

obedetermined).Aparticlei occupiespositionXidandvelocityVidinthedthdimensionofthehy- perspace, 1   i   s 

and1dn.Eachparticleisevaluatedthroughanobjectivefunctionf(x1,x2, . . . , xn),wheref:RnR.Thecost(fitness)ofa

particleclosetotheglobalsolutionislower(higher)than 

thatofaparticlethatisfarther.PSOthrivestominimize(maximize)thecost(fitness)function.Intheglobal-

bestversionofPSO,theposition 

wheretheparticleihasitslowestcostisstoredas(pbestid).Besides,gbestd,thepositionofthebestparticle.Ineachitera

tionk,velocityVandpositionXareupdatedusing(1)and(2).Theupdateprocessisiterativelyrepeateduntileitheran

acceptablegbestisachievedora fixed number of iterations kmaxisreached. 
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Vid(k + 1) = wVid(k)+ ϕ1r1 (k)(pbestid− Xid) 

+ ϕ2r2(k)(gbestd−Xid) (1) 

Xid(k + 1) = Xid(k)+ Vid(k +1) (2) 

where ϕ1and ϕ2are constants, and r1(k) and r2(k) are random numbers uniformly distributed in [0, 1]. This is the 

basic “textbook” informationaboutPSO.PopularthemesofPSOresearchare:choiceof parameters and their ranges, 

iterative adaption of parameters, particle interactiontopologies,convergenceacceleration,adaptiontodiscrete, 

binary and integer domains, and hybridization with other algorithms. The state of the art in PSO is presented 

in[4]. 

 

B. Other OptimizationAlgorithms 

Traditional-optimization methods include linear, nonlinear, and quadratic programming, Newton-based 

techniques, and interior-point methods. Their computational complexities grow exponentially with the problem 

size. Resource requirements and cost of mathematical programming engines (such as IBM ILOG CPLEX) used 

for linear, nonlinear, and quadratic programming make them unattractive for re- 

sourceconstrainednodes.Thisisthemotivationforheuristicalgorithms such as PSO, genetic algorithm (GA), 

differential evolution (DE),and bacterial foraging algorithm (BFA). GA facilitates evolution of the 

populationgenerationbygenerationusingoperatorssuchascrossover, 

mutation,andselection[5].DEissimilartoGA,butitusesadifferen- tial operator [6], which creates a new solution 

vector by mutating an existing one by a difference of randomly chosen vectors. BFAmodels 

theforagingbehaviorofbacteriathatusesacombinationofstraight 

 

 
 

line and random movements to reach nutrient-rich locations [7]. Ad- vantages of PSO over these alternatives are 

the following. 

1) Ease of implementation on hardware orsoftware. 

2) Availability of guidelines for choosing itsparameters. 

3) High-qualitysolutionsbecauseofitsabilitytoescapefromlocal optima [8],[9]. 

4) Availabilityofvariantsforreal,integer,andbinarydomains[4]. 

5) Quick convergence [10],[11]. 

PSO with s number of n-dimensional particles that runs for kmaxiterations requires kmaxs fitness evaluations and 

memory for s n variables each for positions, velocities, and pbest, plus n variables for gbest. This can be 

prohibitively expensive on some nodes. 

 

I. OPTIMAL WSNDEPLOYMENT 

WSNdeploymentproblemreferstodeterminingpositionsforsensornodes(orbasestations)suchthatthedesired
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coverage,connectivity,and energy efficiency can be achieved with as few nodes as possible [12]. 

Eventsinanareadevoidofanadequatenumberofsenornodesremain unnoticed; and the areas having dense sensor 

populations suffer from congestions and delays. Optimally deployed WSN assures adequate 

qualityofservice,longnetworklife,andfinancialeconomy.Available PSO solutions to the deployment problem are 

computed centrally on a base station for determining positions of sensors, mobile nodes, or base stations as 

summarized in TableI. 

 

A. Stationary NodePositioning 

Objective of the centralized, off-line PSO-Voronoi algorithm pro- posed by Aziz et al. in [13] is to 

minimize the area of coverage holes. The strategy is based on the principle that if each point in the region of 

interest (ROI) is covered by a sensor, then the whole ROI is cov- ered. Assessment of coverage involves 

sampling the ROI throughgrid scan. PSO–Voronoi circumvents this by Voronoi polygons around the sensors. 

PSO particles are the sensors’ positions. For each particle, a set of Voronoi polygons are determined, and the 

vertexes of the poly- gons are treated as sample points. The cost function is the number of 

vertexesthatareuncoveredbysensors.PSOVoronoiachievesclosetoidealcoveragebutignoresthetimecomplexityofdet

erminingVoronoi polygons. 

Hu et al. have proposed PSO-Traffic for topological planning for  a real world traffic surveillance application 

[14]. The study uses a large number of camera-loaded nodes, some of which require larger 

transmissionradiifacilitatedbyexpensivehigh-powertransmitters.The objective is to determine the nodes with 

high-power transmitters such thatthehighestpossibleconnectivityisachievedatthelowestpossible hardware 

expense. PSO-Traffic is binary PSO in which the particles representsequencesofsensors. 

PSOseekstominimizeamulti objective fitness parameter LDC = aL + bD + cC, where L is the transmission hop 

of the signal, D is the increase in conflict, and C is the cost of the extrahigh-

powertransmitters.Constantsa,b,andcdefinetherelative weights of L, D, and C, respectively. L and D  are 

computed from  thescaledlengthandthescaleddegree,conceptsfromthesmall-world phenomenon. This algorithm 

has resulted in symmetric distributionof high-powertransmitters,improvednetworkperformance,andasaving in 

systemcost. 

 

B. Mobile-NodePositioning 

Lietal.haveproposedamixtureofstationaryandmobilenodesandparticleswarmgeneticoptimization(PS

GO)asaremedytothecoverageholes[15].ThePSGOhybridisemployedtodetermineredeploymentpositionsofm

obilenodesinordertoimproveaveragenodedensity.PSGOmaximizesqualityofservice,definedasthera- tio of 

the area covered to the total area of the ROI, QoS = Sc/S, which should be ideally equal to unity.  The area 

covered Scis    Sc= Snodc  Srobc , the union of the area covered by the station-   ary nodes and the robot-

assisted mobile nodes. Sconly depends on the sensing radius rsand the positions (x and y coordinates) of the 

N mobile nodes, Sc= f (xrob1 . . .  xrobN , yrob1 . . . yrobN , rs), whichPSGO determines. PSGO borrows the 

mutation and selection opera-tions from GA. In each iteration, PSGO discards some worst particles and 

generates an equal number of new particles at random locations. 

Besides,itmovesafewparticlesrandomly.Thepaperreportsashighas 6% increase in QoS with 5 out of 100 static 

nodes replaced bymobile nodes. Mobile nodes can be repositioned using PSGO dynamically as the network 

topology changes. However, it necessitates mechanisms for obstacle avoidance and location awareness. 

1) VFCPSO: Wang et al. have proposed a virtual force coevolu- 

tionaryPSO(VFCPSO)fordynamicdeploymentofnodesforenhanced coveragein[16].Virtual-force-

baseddynamicdeploymentinvolvesit- erativelymovingasensorbasedonvirtualattractiveorrepulsiveforces 

fromothernodes,obstaclesinthefield,andtheareasthatneedhigher coverageprobability.Virtual-

forcevectorsdependonthedistancebe- tween nodes and whatever attract or repulse them, and their relative 

directions. A sensor’s new positions are computed in such a way that 

itmovesinthedirectionofthevirtualforcebyastepsizeproportional to itsmagnitude. 

In[16],a2n-dimensionalparticleirepresentsxandycoordinates 

of all n mobile sensor nodes: Xi= {x
1
, x

2
, x

1
, x

2
, . . .  x

1
, x

2
}. 

The objective function 
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Fig. 1. Distance-based localization in a WSN. 
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(x and y coordinates of n nodes) to minimize the localization error 

Here,(x,y)isanestimateofthetarget-nodelocation,(xi,yi)isthe 

 

f(Xi) istheeffectivecoverage,whichthePSO maximizes.Inordertoachievebettercoverage,thePSOvelocityequa- 

tionismodifiedbyaddingthetermc3r3(k)gij(k)to(1),wherec3isan 

accelerationconstant,r3(k)isarandomnumberuniformlydistributed 

in[0,1],andgijisthesetofnewlocationsofnsensorscomputedusing virtual forces method. VFCPSO combines 

advantages of virtual force and PSO. Here, the 2n-dimensional PSO is converted into 2n single- 

dimensionalPSOs,eachconductedwithanindividualswarm.Thefinal 

solutionisproducedbyconcatenatingthe2ngbestsolutions.Authors 

reportsuperiorsensorcoveragewithsignificantlylessercomputational effort. The method involves significant 

energy expenditure in broad- casting initial and final positions. It also necessitates mechanisms for localization 

and collisionavoidance. 

 

C. Base StationPositioning 

Hong et al. have proposed PSO Multibase for optimal positioning ofmultiplebasestationsinatwo-

tierWSN[17].Thetwo-tiernetwork consistsofnodesthatcancommunicateonlywiththeapplicationnodes they are 

assigned to. Application nodes possess long range transmit- ters, high-speed processors, and abundant energy. 

The PSO Multibase method aims at determining positions of base stations so that the total 

distanceofapplicationnodestotheirnearestbasestationsisminimum. This deployment requires minimum 

transmission power and assures maximum network life. In PSO Multibase, a particle i represents the positions of 

M base stations, which can be in two or three dimen- 

sionsbasedonthedeploymentterrain.Thefitnessofiisdefinedas 

 

NODE LOCALIZATION INWSNS 
Node localization refers to creating location awareness in de- ployed nodes [18]. Location information is used in  

geometric-  aware routing [19]. An  obvious  method  of  localization  is  to  equip each node  with  a  global  

positioning  system  (GPS),  which is not attractive because of cost,  size,  and  power  constraints.  Many WSN 

localization algorithms estimate locations using  a  priori knowledge of the coordinates of special  nodes  called 

beacons,landmarks,oranchors.WSNlocalizationisatwophaseprocess.Inrangingphase,thenodesestimatetheirdistanc

esfrombeaconsusingsignalpropagationtimeorstrengthofthereceivedsignal.Signalpropagationtimeisestimatedthrou

ghmeasurementoftimeofarrival, roundtriptimeofflightortimedifferenceofarrivalofthesignal[20]. Precise 

measurement of these parameters is not possible due to noise; therefore, the results of such localization is 

inaccurate as shown in Fig. 1. In the estimation phase, position of the target nodes is esti- mated using the 

ranging information either by solving simultaneous 

equations,orbyanoptimizationalgorithmthatminimizeslocalizationerror.PSOalgorithmsforWSNlocalizationaresu

mmarizedinTableI. 

 

A. Determination of Locations of TargetNodes 

Gopakumaretal.haveproposedPSO-Locforlocalizationofn-target nodes out of m nodes based on the a priori 

information of locations ofm−nbeacons[21].Thebasestationrunsa2n-dimensionalPSO 

 
 

Here, lijrepresents the total lifetime of the network, as computed 

 

  

defined as f (x, y) = 1/M 
ΣM 

(
√

(x − x )2 + (y − y )2 − dˆ )2 . 

 

ΣM i=1 i i i 

 
 

li(k)j=ej(0)/(rj(αj1+αj2d
n
 )).Here,d

n
 representsthenth

 neighborhoodofthetargetnode.Estimateddistancefrombeaconi,d̂i, 

orderEuclideandistancefromkthbasestationtojthapplicationnode. 

e(0) is the initial energy, and α1and α2are the distance independent 

anddistancedependentparametersthatdecidetheenergynecessaryfor the transmission, respectively. While both 

PSO Multbase andexhaus- tive grid-scan methods result in comparable lifetime, PSO converges in over 5 orders 

lesser time. The method is central and needs location 

location of beacon node i, and M ≥ 3 is the number of beacons in the 

communicates with the base station k. The lifetime lijis computed as 

k=1li(k)j,thelifetimeoftheapplicationnodejthat by lij= max 

j =1 ij 

n 
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awareness.Besides,thenodeshavetocommunicatetheirinitialenergy 

tothebasestation;thisenergyoverheadaffectsnetworkscalability. 

1) Summary: Static deployment  is  a  one-time  process  in  which solution  quality  is  more  important  

than  fast  conver-  gence. PSO suits centralized deployment. Fast PSO variants are necessary dynamic 

deployment. PSO can also limit network scalability. 

is simulated as the actual distance corrupted by an additive Gaussian 

whitenoise.Thevarianceofnoiseinfluencesthelocalizationaccuracy. The approach does not take into account the 

issues of flip ambiguity andlocalizationofthenodesthatdonothaveatleastthreebeaconsin 

theirneighborhood.Theschemeworkswellonlyifeitherbeaconshave sufficient range, or there exist a large number 

of beacons. Moreover, the base station requires range estimates of all target nodes from all beacons in their 

neighborhoods. This requires a lot of communication that may lead to congestions, delays, and exhaustion of 

energy. In ad- dition, the proposed scheme has a limited scalability because the PSO dimensionality is twice the 

number of targetnodes. 

1) PSO-Iterative: Kulkarni et al. have proposed a distributed iter- ativelocalizationalgorithmPSO-

Iterativein[11].Eachtargetnode, 

which has three or more beacons in its hearing range, runs PSO to 

minimizethelocalizationerror.Nodesthatgetlocalizedactasbeacons 

forothernodes.Thiscontinuesiteratively,untileitherallthenodesget localized, or no more nodes can be. This method 

does not require that each node transmit its range measurement to a central node. Besides, it can localize all 

nodes that have three localized nodes or beacons in 

theirrange.Asthelocalizationiterationspassby,anodemaygetmore 

numberofreferencesforlocalization,whichmitigatetheflipambiguity problem, the situation that results in large 

localization error when the references are near collinear. However, the proposed method is prone to 

erroraccumulation. 

2) PSO-Beaconless:Lowetal.haveproposedin[22]aPSO-based distributed-localization scheme that does not 

involve beacons. The nodes are deployed by an unmanned aerial vehicle equipped with a position sensor. 

The exact location Φiof a node i is treated as the 

conditionalprobabilitydensityfunctionofΦdi,thelocationwherethe 

nodeisdeployed(whichisrecordedbytheuseofapedometer).Ifthis node can receive a signal from a localized 

node j, it can estimate its distance dj. A likelihood function for exact location is expressed in terms of 

Φdiand dj. PSO minimizes one term of this likelihood func- 

tion.Theresultsoftwovariantsofthealgorithmarepresented.Results show fairly accurate localization even in 

sparse deployment. Authors report the results of real-time field tests of an implementation of the PSO-

beaconlessalgorithmonalow-costMicrochip-PIC18LF4620mi- crocontroller [23]. It is reported that PSO 

takes longer computational time, but performs as accurate localization as the Gauss–Newton al- gorithm 

does when the pedometer accuracy is high. However, in less accurate pedometer records, the PSO 

outperforms the Gauss–Newton method in terms of localizationaccuracy. 

3) PSO-4 Beacon: Low et al. have proposed PSO-4 Beacon lo- calization scheme in [24]. This scheme 

assumes a presence of four beaconsdeployedroughlyonboundariesofthesensorfield.Alltarget nodes can 

receive the signals from the beacons deployed at positions A, B, C, and D. A node at location O in the 

sensor field canestimate 

itsdistancefromabeaconasd=(P/P0)−
1

,wherePisthepowertransmittedbythebeaconandP0isthepoweratunitdistanced

0.Envi- ronmentalpathlossexponentαplaysanimportantroleinthedistance 

 
Fig. 2. Structure of a clustered WSN. 
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calls for an optimal cluster-head election mechanism. Besides, clus- ter assignment influences network 

performance and longevity. Low- energy-aware clustering hierarchy (LEACH) is a simple and efficient 

algorithm[25].ClusteringisanNP-hardoptimizationproblem,which PSO can handle efficiently. Clustering or 

cluster-head selection is not a one-time activity; therefore, the simpler the optimization algorithm, the better the 

network efficiency is. This is another reason why PSO is a popular choice for WSN clustering. A summary of 

recent PSO applications in WSN clustering is given in TableI. 

1)PSOClustering:Guruetal.haveproposedfourvariantsofPSO,namely,PSOwithtimevaryinginertiaweight(PSOT

VIW),PSOwithtimevaryingaccelerationconstants(PSO-TVAC),hierarchicalPSO-TVAC(HPSO-

TVAC),andPSOwithsupervisorstudentmode(PSO- SSM)forenergy-

awareclusteringin[26].PSOassignsnjnodestoeachofthekclusterheads,j=1,2 , . . . , k suchthatthetotalenergyl

ossduetophysicaldistancesEddisminimum.Thisisdefinedin(3), whereDjisthedistancebetweencluster-

headjandthebasestationestimation from the received signal strength. In the scheme proposed in [24], the target 

node at location O localizes by solving geometrical 

k nj 

F = 

2 

2 j  
ij nj

 

. (3) 

 

 

equationsifthevalueofαisknown.ThetargetnodeusesPSOtofindthebestvalueofαandusesaKalman-filter-

basedrecursiveestimation tolocalizeitself.Thepaperreportsfairlygoodlocalizationaccuracy.4) Summary: 

Localization is a one-time optimization process in which solution quality is more important than fast 

convergence. Dis- tributed localization is desirable due to energy issues. Though PSO  is appropriate for 

distributed localization, the choice is influenced by availability of memory on thenodes. 

 

ENERGY-AWARE CLUSTERING (EAC) IN  WSNS  

EconomicusageofenergyisacriticalissueinWSNs.Communi-cation is the most energy-expensive activity a node 

performs. Energy required to transmit varies exponentially with transmission distance; therefore, it is customary 

to use multihop communication in WSNs.  A WSN’s lifetime largely depends on how efficiently it carries a data 

packetfromitssourcetoitsdestination.Routingreferstodetermining a path for a packet from a source node to a sink. 

The WSN that uses hierarchical routing has its nodes clustered into groups. Each cluster has a node that acts as 

the cluster head. Nodes that belong to a clus- ter transmit their data packets to the cluster head, which forwards 

it to the base station as shown in Fig. 2. A node that acts as a clus-     

terheadforalongdurationexhaustsitsbatteriesprematurely.This 

j =1 i=1 

 

In PSO-TVIW, the inertia weight w is decreased linearly in each iteration.InPSO-

TVAC,inertiaweightissetconstant,andacceleration constants c1and c2are varied linearly in every iteration. In 

HPSO- TVAC,theparticleupdateisnotinfluencedbythevelocityinprevious iteration; but, reinitialization of velocity 

is done when the velocity stagnates in the search space. Finally, in PSO-SSM, the PSO-update equation is 

modified to (4), where mc is a constant called momentum factor. Clustering is based on a simple idea that for a 

group of nodes thatlieinaneighborhood,thenodeclosesttothebasestationbecomes the cluster head. A detailed 

comparative analysis of the algorithms for optimal clustering is presented. This scheme considers only the 

physicaldistancesbetweennodesandtheirassignedclusterheads,but not the energy available to thenodes 

Xid(k+1)= (1−mc)Xid(k)+mcVid(k+1). (4) 

2) PSOC:Latiffetal.considerbothenergyavailabletonodesandphysicaldistancesbetweenthenodesandthe

irclusterheadsin[27].Eachparticlerepresentsacombinationofclusterheads.Thefitnessfunctionforthecentralize

dPSO(PSO-C)isdefinedasf=βf1+ (1β)f2,wheref1isthemaximumaverageEuclideandistanceof 

nodestotheirassociatedclusterheadsandf2istheratiooftotalinitial 

energy of all nodes to the total energy of the cluster-head candidates. These are expressed as (5) and (6), 

respectively. 

TheauthorspresentnumericalresultstoshowthatthepowerscheduledeterminedbyPSOresultsinsubstantialenergysavi

ngsincomparison totheuniformpowerschedule,especiallyincaseofalargenumberof 

 

f1= max 

⎧
⎨Σ

 

d 

. 
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d(ni, CHp ,k)

⎫
⎬

 

(5) 

nodes. 

k=1,2,..K⎩∀n∈C
 

p, k 

|Cp,k| ⎭ 

B. Determination of Optimal-LocalThresholds 

N 

f= i=1 

E(ni) 

 

(6) 

In binary hypothesis-testing, distributed sensors make a binary (0 

2 K 

k =1 

E(CHp,k) 

or 1) decision using local thresholds and send their decisions to a neighboring node. In a parallel-fusion 

architecture, all nodes send their 

where N  is the number of nodes out of which K  will be elected       as the cluster heads. Cp,kis the number of 

nodes that belong to cluster Ckin particle p. This ensures that only the nodes that have above-average energy 

resources are elected as the cluster heads, and that the average distance between the nodes and the cluster heads 

is minimum. They compare the results of the algorithm with those ofLEACHandtheLEACH-

Calgorithms[28].ThePSO-basedclustering outperforms both LEACH and LEACH-C in terms of the network 

lifespanandthethroughput.In[9],Latiffetal.showthatthisPSO-based algorithmoutperformsGAandK-means-

basedclusteringalgorithmsas well. 

3) MST-PSO:Caoetal.haveconsideredaninterestingcaseinwhich anodeanditscluster-

headengageinamultihopcommunication[29]. Themethodcomputesadistance-basedminimumspanningtreeofthe 

weighted graph of the WSN. The best route between a node and its cluster-head is searched from all the optimal 

trees on the criterion    ofenergyconsumption.Clusterheadsareelectedbasedontheenergy 

availabletothenodesandtheEuclideandistancetoitsneighbornodein 

theoptimaltree.Theauthorscomparetheperformancesofthreemech- anismsofcluster-

headelection:energybased,auto-rotationbased,and probabilitybased.Routingandcluster-

headrotationaretreatedasop- timization problems and tackled through PSO. The results show that the PSO-based 

clustering methods ensure longer networklife. 

4) Summary: Optimal clustering has a strong influence on the per- 

formanceofWSN.Clusteringisacentralizedoptimizationcarriedout in a resource rich base station suitablefor. 

 

DATA AGGREGATION INWSNS 

Largescaledeploymentofsensorsresultsinvoluminousdistributeddata.Efficientcollectionofdataiscritical.Dataaggre

gationisthepro-cessofcombiningthedataoriginatingfrommultiplesourcessuchthat 

theresultisbetter(moreconcise,morereliable,etc.)orthecommuni- cation overhead is reduced [30]. A major 

application of a distributed WSNistodetectanevent.Indecentralized-detectionframework,each 

sensornodecollectslocalobservationscorruptedbynoiseandsendsa summary (compressed or partially processed 

data) to a fusion center. Thefusioncenterusesthesametomakethefinalglobaldecision.This ensures an extended 

network lifespan at the expense of a reduction in performance. 

PSOhasprovidedoptimizationinseveralaspectsofdata aggregation as summarized in TableI. 

 

A. Optimal Transmission Power Allocation 

Thewirelesschannelcommontothenodesandthefusioncenterundergoesfading,whichinfluencestheaccuracyoffusion

.Itisshownthat the transmission power-allocation scheme for distributed nodes plays an important role in the 

fusion-error probability. Wimalajeewa et al. address the problem of optimal power allocation through 

constrained PSO in [31]. Their algorithm PSO-Opt-Alloc uses PSO to determine optimal-power allocation in the 

cases of both independent and corre- latedobservations.Theobjectiveistominimizetheenergyexpenditure while 

keeping the fusion-error probability under a required threshold. 

decisions to a base station; and in serial architecture, decisions follow a hop sequence from the first node to the 

base station. Threshold-  ing leads to a gain in terms of bandwidth and energy, and a loss in terms of accuracy. 

i 
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Optimal thresholds on all nodes and an optimal- decision route (called hierarchy) assure minimum energy 

expenditure and maximum accuracy. Veeramachaneni et al. present a hybrid of ant-based control and PSO 

(ABC-PSO) for hierarchy and threshold management[32].Inant-basedoptimization,artificialantsmovefrom a 

node to another constructing a partial solution to the problem. Once 

anantreachesthefinalnode,theperformanceofthesolutionisevalu- 

atedandthepathemphasizedusingamathematicalvalueproportional to its performance (called pheromone). In 

ABC-PSO algorithm, ants constructthesequenceandPSOidentifiesthethresholdsandachieves the minimum error 

for the sequence. A feedback on this is presented to ants to help them move in the search space and identify 

better sequences. 

 

C. Optimal SensorConfiguration 

Multisensor systems consist of several sensing options and configurations. Adaptive configuration of 

the system having  var- ious sensor resources and multiple sensor parameters is a multiobjective optimization 

problem. Objectives  generally  in-  clude   maximum   accuracy,   minimum   usage   of   communica- tion 

resource,  and  maximum  sensing  coverage.  Veeramachaneni  

etal.presentabinarymultiobjectivePSOBMPSOforoptimalconfig- 

urationin[33].ThismethodusesBayesiandecision-fusionframework to fuse the decisions from multiple sensors. 

Swarm agents are used to evolvethechoiceofsensors(eachagentisasubsetofsensorsusedfor 

fusion).EachagentevokesPSOtoevolvethethresholdsandoptimum fusion rules for its sensor set. The results 

highlight agents’ ability to decide an optimal configuration of sensors, their thresholds, and the optimal-

fusionrule. 

1) Summary: Data aggregation is a distributed repetitive process moderately suitable for PSO. Effective 

data aggregation influences overallWSNperformanceanddemandsquick-convergenceoptimiza- tion techniques 

that assure high-quality solutions. PSO is moderately suitable for thischallenge. 

 

II. Conclusion 
Scale and density of deployment, environmental uncertainties, and constraints in energy, memory, 

bandwidth, and computing resources poseseriouschallengestothedevelopersofWSNs.Issuesofthenode 

deployment, localization, energy-aware clustering, and data aggrega- tion are often formulated as optimization 

problems. Most analytical methods suffer from slow or lack of convergence to the final solu- tions. This calls 

for fast optimization algorithms that produce quality solutions utilizing less resources. PSO has been a popular 

technique used to solve optimization problems in WSNs due to its simplicity, high quality of solution, fast 

convergence, and insignificant compu- tational burden. However,  iterative nature of PSO can prohibit its  

useforhigh-speedreal-timeapplications,especiallyifoptimization

needs to be carried out frequently. PSO requires large amounts of memory, which may limit its implementation 

to resource-rich base stations. Literature has abundant successful WSN applications that exploit advantages of 

PSO. Data aggregation needs frequent dis- tributed optimization and fast solutions. Thus, PSO moderately suits 

it. Static deployment, localization, and clustering are the problems solved just once on a base station; thus, PSO 

highly suits them. Fu- ture research on PSO in WSN applications is likely to focus on the following. 

1) Transformation of existing simulations into real-world applica- tions. 

2) Development of PSO inhardware. 

3) Development of parameterless black-boxPSO. 

4) Cross-layer optimization throughPSO. 

An overview of PSO, issues in WSNs, and a brief survey of recent PSO-based solutions to the WSN 

issues are presented in this paper. AdvantagesandlimitationsofPSOhavebeenpointedout.Aqualitative discussion 

on how PSO is tailored for WSN applications ispresented, and promising research directions are projected. From 

the current rate of growth of PSO-based applications, it is envisioned that PSO will 

continueasanimportantoptimizationtechniqueinseveralengineering fields includingWSNs. 
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