Completely Semi Prime, Fuzzy Semiprime Ideals Of A Po Ternary Semigroup

J.M.Pradeep¹, A. Gangadhara Rao², P.Ramyalatha³, M.J.Subhakar⁴

¹((Dept. of Mathematics, A.C.College, Guntur, India ²(Dept. of Mathematics, V.S.R. & N.V.R. College, Tenali, India-522 201 ³(Dept. of Mathematics, vignan institute of technology, vadlamudi, Guntur India 522 213 ⁴Dept. of Mathematics, Noble college, Machilipatnam Corresponding Author; J.M.Pradeep

Abstract: In this paper we introduced the terms of Completely fuzzy semiprimepo ideals and fuzzy semiprime ideals of poternarysemigroups and also introduced the concepts of fuzzy d-system and fuzzy n-system of poternarysemigroups. It is proved that every completely fuzzy prime ideal of poternarysemigroup T is a completely fuzzy semiprime ideal of T also proved that every fuzzy m-system of po ternary semigroup is fuzzy n-system. Mathematical subject classification (2010): 20M07; 20M11, 20M12

Keywords:Completely semiprime, completely fuzzy prime, completely fuzzy semiprime,fuzzysemiprime,fuzzymsystem,fuzzyn-system.

Date of Submission: 12-09-2018

Date of acceptance: 27-09-2018

I. Introduction:

The algebraic theory of semigroups was widely studied by Clifford[2,3]. The ideal theory in general semigroups was developed by Anjaneyulu[1]. Since then a series of researchers have been extending the concepts and results of abstract algebra. Padmalatha, A. Gangadhara Rao and A.Anjaneyulu[10] introduced posubsemigroup, posubsemigroup generated by a subset, two sided identity of a posemigroup, zero of a posemigroup, po ideal generated by a subset. On the other hand, P.M.Padmalatha , A.Gangadhara Rao, P.RamyaLatha [12] introduced completely prime, prime ideal of a posemigroupV.Sivaramireddy studied on ideals in partial ordered ternary semi groups [16].

The concept of a fuzzy set was introduced by Zadeh in 1965[6]. This idea opened up new thoughts and applications in a wide range of scientific fields. A. Rosenfeld applied the notion of fuzzy subset to several areas of mathematics, among other disciplines. N. Kuroki, J N Mordeson developed the fuzzy semigroups concept. N.Kehayopulu, M.Tsingelis introduced the notion of fuzzy subset of a posemigroups[7-9]. Motivated by the study of N.Kehayopulu, M.Tsingelis work in posemigroups we attempt in the paper to study the completely semiprimepo ideals and fuzzy semiprimepo ideals of partialordered ternary semigroups.

II. Preliminaries:

Definition 2.1: [5] A semigroup T with an ordered relation \leq is said to be po Ternarysemigroupif T is a partially ordered set such that $a \leq b \Rightarrow aa_1a_2 \leq ba_1a_2$, $a_1aa_2 \leq a_1ba_2$, $a_1a_2a \leq a_1a_2b$ for all $a, b, a_1a_2 \in T$.

Definition 2.2: A function f from T to the closed interval [0,1] is called a fuzzy subset of T. The poternary semigroup T itself is a fuzzy subset of T such that T(x) = 1, $\forall x \in T$. It is denoted by T or 1.

Definition 2.3: Let A be a non-empty subset of T. We denote f_A , the characteristic mapping of A. i.e., The mapping of T into [0,1] defined by

 $f_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \text{ Then } f_A \text{ is a fuzzy subset of T} \\ \textbf{Definition 2.4:} [5]: A fuzzy subset f of a po ternary semigroup T is called fuzzy Ternarysub semigroup of T if <math>f(xyz) \ge f(x) \land f(z) \lor x, y, z \in T$. $\textbf{Definition 2.5: Let T be a po ternary semigroup. For H \subseteq T \\ \text{we define } (H] = \{t \in T / t \le h \text{ for some } h \in H\}. For H = \{a\} \text{ we write } (a] = \{t \in T / t \le a\} \\ \textbf{Definition 2.5: Let T be a po ternary semigroup. For H \subseteq T \\ \text{we define } [H] = \{t \in T / t \le h \text{ for some } h \in H\}. For H = \{a\} \text{ we write } (a] = \{t \in T / t \le a\} \\ \textbf{Definition 2.5: Let T be a po ternary semigroup. For H \subseteq T \\ \text{we define } [H] = \{t \in T / h \le t \text{ for some } h \in H\}. For H = \{a\} \text{ we write } (a] = \{t \in T / t \le a\} \\ \textbf{Definition 2.6: Let T be a fuzzy subset of a po ternary semigroup T. We define (f]by \\ (f](x) = \underset{x \le y}{y} f(y), \forall x \in T. \\ \textbf{Note 2.7: Clearlyf } \subseteq (f]. \end{cases}$ Note 2.8: The set of all fuzzy subsets of T is denoted by F(T).

Definition 2.9: Let (T, \leq) be a poternary semigroup and f,g,h be fuzzy subsets of T. For $x \in T$ the product fogoh is defined by (fogoh)(x) = $\begin{cases} V_{x \le pqr} & f(p) \land g(q) \land h(r) & \text{if } x \le pqr & \text{exists} \\ 0 & \text{otherwise} \end{cases}$

Definition 2.10:[11] A nonempty subset A of a poternary semigroup T is said to be poleft ternary ideal or po left ideal of T if i) b, $c \in T$, $a \in A \Rightarrow bca \in A$ ii) $a \in A$ and $t \in T$ such that $t \le a \Rightarrow t \in A$.

NOTE : A nonempty subset A of a poternary semigroup T is a poleft ternary ideal of T if and only if i) TTA \subseteq A ii) (A] \subseteq A.

Definition 2.11: A nonempty subset A of a po ternary semigroup T is said to be po lateral ternary ideal or po lateral ideal of T if i) b, $c \in T$, $a \in A \Rightarrow bac \in A$ ii) $a \in A$ and $t \in T$ such that $t \le a \Rightarrow t \in A$.

NOTE 2.12: A nonempty subset A of a poternary semigroup T is a polateral ternary ideal of T if and only if i) TAT UTTATT \subseteq A ii) (A] \subseteq A.

Definition 2.13: A nonempty subset A of a po ternary semigroup T is said to be po right ternary ideal or po right ideal of T if i) b, $c \in T$, $a \in A \Rightarrow abc \in A$ ii) $a \in A$ and $t \in T$ such that $t \le a \Rightarrow t \in A$

NOTE 2.14: A nonempty subset A of a poternary semigroup T is a poright ternary ideal of T if and only if i) $ATT \subseteq A$ ii) $(A] \subseteq A$.

Definition 2.15: A nonempty subset A of a poternary semigroup T is said to be poternary ideal or poideal of T if i) b, $c \in T$, $a \in A \Rightarrow bca \in A$, $bac \in A$, $abc \in A$ ii) $a \in A$ and $t \in T$ such that $t \le a \Rightarrow t \in A$.

NOTE 2.16: A nonempty subset A of a poternary semigroup T is a poternary ideal of T if and only if i) TTA \subseteq A, TAT \subseteq A, ATT \subseteq A ii) (A] \subseteq A.

Definition 2.17:[11]LetT be a poternary semigroup. A fuzzy subset f of T is called a fuzzy poleft idealof T if (i) $x \le y$ then $f(x) \ge f(y)$ (ii) $f(xyz) \ge f(z), \forall x, y, z \in T$

Lemma 2.18: [10] Let T be a poternary semigroup and f be a fuzzy subset of T. Then f is a fuzzy poleft ideal of T if and only if f satisfies that (i) $x \le y$ then $f(x) \ge f(y) \forall x, y, z \in T$ (ii) Tofof f.

Definition 2.19: [11]Let T be a poternary semigroup. A fuzzy subset f of T is called a fuzzy poright idealof T if (i) $x \le y$ then $f(x) \ge f(y)$ (ii) $f(xyz) \ge f(x), \forall x,y,z \in T$.

Lemma 2.20 [10] Let T be a poternary Semigroup and f be a fuzzy subset of T. Then f is a fuzzy right ideal of T if and only if f satisfies that (i) $x \le y$ then $f(x) \ge f(y) \forall x, y, z \in T$ (ii) for $f(z) \subset f$.

Definition 2.21: [11]Let T be a poternary semigroup. A fuzzy subset f of T is called apo lateral idealfuzzyof T if (i) $x \le y$ then $f(x) \ge f(y)$ (ii) $f(xyz) \ge f(y), \forall x, y, z \in T$

Lemma 2.22: [10] Let T be a po ternary Semigroup and f be a fuzzy subset of T. Then f is a fuzzy lateral ideal of T if and only if f satisfies that (i) $x \le y$ then $f(x) \ge f(y) \forall x, y, z \in T$

(ii)foTof \subset f.

Definition 2.23: [11]Let T be a poternary semigroup. A fuzzy subset f of T is called a fuzzy ideal of T if (i) $x \le y$ then $f(x) \ge f(y)$ (ii) $f(xyz) \ge f(z)$, $f(xyz) \ge f(x)$, $f(xyz) \ge f(y) \forall x, y, z \in T$.

Lemma 2.24 :[10] Let T be a poternary semigroup and f be a fuzzy subset of T. Then f is a fuzzy ideal of T if and only if f satisfies that (i) $x \le y$ then $f(x) \ge f(y) \forall x, y, z \in T$ (ii) fo foT f and Tofof f and foT of f.

Lemma 2.25:[7]Let T be a poternary semigroup and $\emptyset \neq A \subseteq T$. Then A is a left ideal of T if and only if the characteristic mapping f_A of A is a fuzzy left ideal of T.

Lemma 2.26:[7]Let T be a poternary semigroup and $\emptyset \neq A \subseteq T$. Then A is a right ideal of T if and only if the characteristic mapping f_{A} of A is a fuzzy right ideal of T

Lemma 2.27:[7]Let T be a poternarysemigroup and $\emptyset \neq A \subseteq T$ Then A is an ideal of T if and only if the characteristic mapping f_A of A is a fuzzy ideal of T.

Proposition 2.28: [13] Let f,g,h be fuzzy subsets of T. Then the following statements are true. a. $f \subseteq (f], \forall f \in F(T)$ b. If $f \subseteq g$ then $(f] \subseteq (g]$

c.(f]o(g] \subseteq (fog], $\forall f, g \in F(T)d$. (f] = ((f]), $\forall f \in F(T)$

e. For any fuzzy ideal f of T f = (f]

f. If f,g are fuzzy ideals of T, then fog $f \cup g$ are fuzzy ideals of T.

g. fo(g \cup h] \subseteq (fog \cup foh] h.(g \cup h]of \subseteq (gofUhof].

i. If a_{λ} is an ordered fuzzy point of T, then $a_{\lambda} = (a_{\lambda})$.

Definition 2.29: [13]Let T be a poternary semigroup, $a \in T$ and $\lambda \in (0,1]$. An ordered fuzzypoint $a_{\lambda}, a_{\lambda}: T \to \infty$ $[0,1] defined by a_{\lambda}(x) = \begin{cases} \lambda \text{ if } x \in (a] \\ 0 \text{ if } x \notin (a] \end{cases}$

clearlya₁ is a fuzzy subset of T. For every fuzzy subset f of T, we also denote $a_1 \subseteq f$ by $a_2 \in f$

Definition 2.30: [5] Let f be a fuzzy subset of X. Let $t \in [0,1]$. Define $f_t = \{x \in X/f(x) \ge t\}$. We call f_t a t-cut or a level set.

Definition 2.31:[12]A po (left/right/lateral) ideal of A of a po ternary semigroup T is said to be completely prime (left/right lateral) ideal of T provided x, y, $z \in T$ and $xyz \in A$ implies either $x \in A$ or $y \in A$ or $z \in A$.

30 | Page

III. Completely Fuzzy Semiprimepo Ideals And Fuzzy Semiprimepo Ideals

Definition 3.1: A fuzzy ideal of a poternary semigroup T is said to be a completely fuzzy semiprimeideal if for any fuzzy point a_t of T such that $a_t^n \subseteq f$ for some odd natural number $n \in N$ then $a_t \subseteq f$.

Theorem 3.2: Let f be a fuzzy ideal of a poternary semigroup T.f is completely fuzzy semiprime ideal iff for any ordered fuzzy point a_t of T such that $a_t^3 \subseteq f \Rightarrow a_t \subseteq f$.

Proof: Suppose f is completely fuzzy semiprime then clearly if $a_t^3 \subseteq f \Rightarrow a_t \subseteq f$.

Conversely suppose that $a_t^3 \subseteq f \Rightarrow a_t \subseteq f$.

We prove this by induction on n. This is true for n = 3.

Assume that this is true for n = k.

 $\Rightarrow a_t^{k+2}oa_t^{k+2}oa_t^{k-4} \subseteq ToTof \subseteq f \Rightarrow a_t^{3k} \subseteq f \Rightarrow (a_t^k)^3 \subseteq f \Rightarrow a_t^k \subseteq f \Rightarrow a_t \subseteq f$ by inductive hypothesis. Therefore f is completely fuzzy semiprime ideal.

Theorem 3.3: If f is completely fuzzy semiprime ideal of a poternary semigroup T then for $x \in T$ for every $\lambda_1, \lambda_2, \lambda_3 \in (0,1](i)x_{\lambda_1}ox_{\lambda_2}ox_{\lambda_3} \subseteq f \Rightarrow x_{\lambda_1}ox_{\lambda_2}oToTox_{\lambda_3} \subseteq f$

(ii)
$$x_{\lambda_1} oT oT ox_{\lambda_2} ox_{\lambda_3} \subseteq f$$
 (iii) $\subseteq f$

Proof: Let *f* be completely fuzzy semiprime ideal of a poternary semigroup T Suppose $x_{\lambda_1} o x_{\lambda_2} o x_{\lambda_3} \subseteq f$. Consider

 $(x_{\lambda_1} o x_{\lambda_2} o T o T o x_{\lambda_3})^3 = (x_{\lambda_1} o x_{\lambda_2} o x_{\lambda_3} o T o T) o(x_{\lambda_1} o x_{\lambda_2} o x_{\lambda_3} o T o T) o(x_{\lambda_1} o x_{\lambda_2} o x_{\lambda_3} o T o T)$ $\subseteq (x_{\lambda_1} o x_{\lambda_2} o T o T) o(x_{\lambda_3} o x_{\lambda_1} o x_{\lambda_2}) o T o T o(x_{\lambda_3} o x_{\lambda_1} o x_{\lambda_2}) o T o T o x_{\lambda_2}$

$$\subseteq x_{\lambda_1} o x_{\lambda_2} o T \text{ of } o T o T o$$
$$\subseteq f$$

 $\Rightarrow (x_{\lambda_1} o x_{\lambda_2} o x_{\lambda_3} o T o T)^3 \subseteq f \Rightarrow x_{\lambda_1} o x_{\lambda_2} o x_{\lambda_3} o T o T \subseteq f \text{ since } f \text{ is completely fuzzy semiprime ideal.}$

Consider

$$(x_{\lambda_1} oT oT ox_{\lambda_2} ox_3)^3 = \Rightarrow= (x_{\lambda_1} oT oT ox_{\lambda_2} ox_3) o(x_{\lambda_1} oT oT ox_{\lambda_2} ox_{\lambda_3}) o(x_{\lambda_1} oT oT ox_{\lambda_2} ox_{\lambda_3}) \Rightarrow= (x_{\lambda_1} oT oT) o (x_{\lambda_2} ox_{\lambda_3} ox_{\lambda_1}) oT oT) o(x_{\lambda_2} ox_{\lambda_3} ox_{\lambda_1}) oT oT ox_{\lambda_2} ox_{\lambda_3} \subseteq (x_{\lambda_1} oT oT) of oT oT of oT oT ox_{\lambda_2} ox_{\lambda_3} \subseteq f$$

therefore $x_{\lambda_1} oT oT ox_{\lambda_2} ox_{\lambda_3} \subseteq f$ since f is completely fuzzy semiprime ideal. Consider

 $\left(x_{\lambda_1} o T o x_{\lambda_2} o T o x_{\lambda_3}\right)^3 =$

$$\begin{pmatrix} x_{\lambda_1} o T o x_{\lambda_2} o T o x_{\lambda_3} \end{pmatrix} o \begin{pmatrix} x_{\lambda_1} o T o x_{\lambda_2} o T o x_{\lambda_3} \end{pmatrix} o \begin{pmatrix} x_{\lambda_1} o T o x_{\lambda_2} o T o x_{\lambda_3} \end{pmatrix}$$

= $x_{\lambda_1} o T o x_{\lambda_2} o T o \{ x_{\lambda_3} o x_{\lambda_1} o (T o x_{\lambda_2} o T) o (x_{\lambda_3} o x_{\lambda_1} o T) o T o x_{\lambda_3} \}$

⊆f

therefore $x_{\lambda_1} o T o x_{\lambda_2} o T o x_{\lambda_3} \subseteq f$ since *f* is completely fuzzy semiprime ideal.

Corollary 3.4: Let f be a fuzzy ideal of a poternary semigroup T. If f is completely semiprime then for every two ordered fuzzy points x_t, y_r, z_s of T such that $x_t oy_r oz_s \subseteq f$ then $\langle x_t \rangle o \langle y_r \rangle o \langle z_s \rangle \subseteq f$.

Theorem 3.5: Every completely fuzzy prime ideal of a poternary semigroup T is a completely fuzzy semiprime ideal of T.

Proof: Let *f* be completely fuzzy prime ideal of a poternary semigroup T and a_t be any ordered fuzzy point of T such that $a_t^3 \subseteq f \Rightarrow a_t o a_t o a_t \subseteq f \Rightarrow a_t \subseteq f$.

Therefore f is completely fuzzy semiprime.

Theorem 3.6: Let f be fuzzy prime poideal of a poternary semigroup T. If f is completely fuzzy semiprime poideal of T then f is completely fuzzy prime.

Proof: Let f be completely fuzzy semiprime ideal of T.

 $\operatorname{Let} x_t o y_r o z_s \subseteq f \implies < x_t > o < y_r > o < z_s > \subseteq f \text{ by corollory3.4}$

 $\Rightarrow x_t \subseteq f \text{ or } y_r \subseteq f \text{ or } z_s \subseteq f \text{ since } f \text{ is fuzzy ideal.}$

Therefore f is completely fuzzy prime.

Theorem3.7:The nonempty intersection of any family of completely fuzzy prime po ideal of a po ternary semigroup T is a completely fuzzy semiprimepo ternary ideal of T. **Proof :**

Clearly $\cap f_{\alpha}$ is a fuzzy ideal. Let $x_{\lambda}^{3} \in \bigcap f_{\alpha} \Rightarrow x_{\lambda}^{3} \in f_{\alpha}$ for each α . $\Rightarrow x_{\lambda} \in f_{\alpha}$ for each α , since f_{α} is completely fuzzy prime. Therefore $\cap f_{\alpha}$ is completely fuzzy semiprime ideal of T **Definition3.8:** A fuzzy po subset f of T is said to be a fuzzy d-system if $x_t \subseteq f \Rightarrow x_t^n \subseteq f$ for all odd natural number $n \in N$. **Theorem 3.9:** Let f be fuzzy poideal of a poternary semigroup T.f is completely fuzzy semiprime iff 1 - f is a fuzzy d-system of T if $1 - f \neq \emptyset$. **Proof:** Suppose that f is a completely fuzzy semiprime poideal of T. Let $x_t \subseteq 1 - f \Rightarrow x_t \not\subseteq f \Rightarrow f(x) < t$ If possible $x_t^n \not\subseteq 1 - f \Rightarrow x_t^n \subseteq f$ for every odd natural number $n \in N \Rightarrow x_t^3 \subseteq f \Rightarrow x_t \subseteq f$ which is contradiction. Therefore $x_t^n \subseteq 1 - f \Rightarrow 1 - f$ is a fuzzy d-system. Conversely suppose 1 - f is fuzzy d-system of T. Let $x_t^3 \subseteq f$. Suppose $x_t \notin f \Rightarrow x_t \subseteq 1 - f \Rightarrow x_t^n \subseteq 1 - f$ for every odd natural number $n \in N$ $\Rightarrow x_t^3 \subseteq 1 - f \Rightarrow x_t^3 \notin f$, which is contradiction. Therefore $x_t \subseteq f \Rightarrow f$ is completely fuzzy semiprime poideal. **Definition 3.10:** A fuzzy po ideal f of a poternary semigroup T is said to be fuzzysemiprimeif g is a fuzzy po ideal of T and $g^n \subseteq f$ for some odd natural number n then $g \subseteq f$. **Theorem 3.11:** A fuzzy po ideal f of a po semigroup T is semiprime iff g is fuzzy po ideal of T such that $g^3 \subseteq f$ then $g \subseteq f$ **Proof**:Suppose *f* is fuzzy semiprime. If $g^3 \subseteq f$ by definition $g \subseteq f$. Conversely suppose that if $g^3 \subseteq f$ then $g \subseteq f$. We prove that if $g^n \subseteq f$ for some odd natural number n then $g \subseteq f$ by using induction on n. Since if $g^3 \subseteq f$ then $g \subseteq f$, it is true for n = 3. Assume that $g^k \subseteq f$ for some, $1 \leq k \leq n \Rightarrow g \subseteq f$. Now assume $g^{k+1} \subseteq f \Rightarrow g^{k+1} \circ g^{k+1} \circ g^{k+1} \subseteq f$ since f is fuzzy po ideal $\Rightarrow g^{3k+3} \subseteq f \Rightarrow (g^{k+1})^3 \subseteq f \Rightarrow g^{k+1} \subseteq f \Rightarrow g \subseteq f.$ By induction, f is fuzzy semiprime po ternary ideal. Theorem 3.12: Every fuzzy prime po ideal of a po ternary semigroup is fuzzy semiprimepo ideal. **Proof:** Let *f* be fuzzy prime po ideal of a po ternary semigroup T. Let $g^3 \subseteq f$ where g is a fuzzy po ideal $\Rightarrow g \subseteq f$ since f is fuzzy po prime. Therefore f is fuzzy semiprime po ideal. **Theorem 3.13:** If f is a fuzzy poideal of a poternary semigroup T then the following are equivalent. (a) f is a fuzzy semiprime po ideal. (b) For an ordered fuzzy point $a_t < a_t > 3 \subseteq f \Rightarrow a_t \subseteq f$. (c) For any a_t , $Toa_t o Toa_t o Toa_t o T \subseteq f \Rightarrow a_t \subseteq f$. **Proof:** $(a) \Rightarrow (b)$ is obvious. $(b) \Rightarrow (c)$: Let a_t be a fuzzy point of T such that $Toa_t o Toa_t o Toa_t o T \subseteq f$. $(a_t \cup a_t o T o T \cup T o a o_t o T \cup T o T o a_t o \cup T o a_t o T o a_t o T) o$ $(a_t \cup a_t \circ T \circ T \cup T \circ a \circ_t \circ T \cup T \circ T \circ a_t \circ \cup T \circ a_t \circ T \circ a_t \circ T)$ $\subseteq \text{To}(a_t \cup a_t \circ T \circ T \cup T \circ a \circ_t \circ T \cup T \circ T \circ a_t \circ U \to T \circ a_t \circ T \circ a_t \circ T)$

Let $\{f_{\alpha}\}$ be an arbitrary family of completely prime fuzzy ideals of T such that $\cap f_{\alpha} \neq \emptyset$.

 $\subseteq (\text{To}a_t) \cup (\text{To}a_t \circ \text{To}a_t \circ T \circ a_t)$ $\subseteq \text{To}a_t \circ \text{To}a_t \circ \text{To}a_t \circ T \circ a_t)$

 $\subseteq f$

 $(c) \Rightarrow (a)$: For any a_t , $Toa_t oToa_t oToa_t oT \subseteq f$ then $a_t \subseteq f$. Let g be any fuzzy poideal of T such that $g^3 \subseteq f$. Suppose if possible $g \not\subseteq f \Rightarrow$ there exists a fuzzy point $a_t \subseteq g$ and $a_t \not\subseteq f$. Since $a_t \subseteq g$. Now $Toa_t oToa_t oToa_t oT \subseteq g^3 \subseteq f \Rightarrow a_t \subseteq f$, Which is a contradiction. $\Rightarrow g \subseteq f$. Therefore f is a fuzzy semiprime poternary ideal of T. **Theorem 3.14:** Every completely fuzzy semi prime po ideal of a po ternary semigroupT is a fuzzy semiprimepo ideal of T.

Proof: Suppose that f is completely fuzzy semiprime poideal of T.

Let a_t be any ordered fuzzy point of T such that $\langle a_t \rangle^n \subseteq f$ for some odd natural number $n \in N$. Now $a_t o a_t o a_t (n \text{ times}) \subseteq \langle a_t^n \rangle \subseteq \langle a_t \rangle^n \subseteq f$

 $\Rightarrow a_t^n \subseteq f \Rightarrow a_t \subseteq f \Rightarrow < a_t > \subseteq f \text{ by theorem 3.13.}$

Therefore f is a fuzzy semiprime poideal of T.

Theorem 3.15: Let T be a commutative poternary semigroup and f be a fuzzy poideal of T. Then f is completely fuzzy po semiprime iff f is fuzzy po semiprime. **Proof:** Suppose f is completely fuzzy posemiprime. By theorem 3.14, f is a fuzzy semiprime poideal of T. Conversely, suppose that f is fuzzy semiprime poideal of T.

Let a_t be any ordered fuzzy point of T, $a_t^n \subseteq f$ for some odd natural number $n \in N$.

Now $a_t^n \subseteq f \Rightarrow < a_t >^n \subseteq f \Rightarrow < a_t > \subseteq f$ since *f* is fuzzy semiprime $\Rightarrow a_t \subseteq f$

Therefore f is completely fuzzy semiprimepo ideal of T.

Theorem 3.16: The non-empty intersection of arbitrary family of fuzzy prime po ideals of a po ternary semigroup T is a fuzzy semi prime po ideal.

Proof:Let $\{f_{\alpha}\}$ be an arbitrary family of fuzzy prime poideals of T such that $\cap f_{\alpha} \neq \emptyset$.

Clearly $\cap f_{\alpha}$ is a fuzzy po ideal

Let a_t be any ordered fuzzy point of T such that $\langle a_t^3 \rangle \subseteq \cap f_{\alpha} \Rightarrow \langle a_t^3 \rangle \subseteq f_{\alpha}$ for each $\alpha \Rightarrow \langle a_t \rangle \subseteq f_{\alpha}$ for each $\alpha \Rightarrow \langle a_t \rangle \subseteq \cap f_{\alpha}$

Therefore intersection of arbitrary family of fuzzy prime po ideals of a po ternary semigroup T is a fuzzy semi prime po ideal.

Definition 3.17: Let f be a fuzzy po subset of a po ternary semigroup T.f is said to be fuzzyn-system of T provided if $f(x) > t \Rightarrow \exists c \in T, s \in T \ni f(c) > t$ and $c \leq xsx$.

Theorem3.18: Every fuzzy m-system of a po ternary semigroup T is a fuzzy n-system. **Proof:** Let f be a fuzzy m-system of a po semigroup T. Let f(x) > t for some $x \in T$.

Since f(x) > t and f(x) > t, *f* is fuzzy m-system

 $\Rightarrow \exists c \in T, s \in T \ni f(c) > t \lor t \lor t = t \text{ and } c \leq xsx$

 $\Rightarrow f(c) > t$ and $c \le xsx$ whenever f(x) > t

 \Rightarrow *f* is fuzzy n-system. Therefore every fuzzy m-system is a fuzzy n-system.

Corollary 3.19: Let f be a fuzzy semiprime po ideal of a poternary semigroup T. If $x_r oTox_r \subseteq f$ for some ordered fuzzy point x_r of T then $x_r \subseteq f$

Proof: Let *f* be fuzzy semiprime po ideal of T. Let $x_r \circ T \circ x_r \subseteq f$

 $Consider(Tox_r oT)^3 = (Tox_r oT)o(Tox_r oT)o(Tox_r oT) \subseteq To(x_r oTox_r)oT \subseteq TofoT \subseteq f$

 \Rightarrow $(Tox_r oT)^3 \subseteq f$ and f is a fuzzy semiprime poideal of T.

 $\Rightarrow (Tox_r oT) \subseteq f. \text{ we know } (x_r)^3 \subseteq Tox_r oT \subseteq f \Rightarrow x_r \subseteq f$

Theorem 3.20: Let *f* be a fuzzy ideal of a poternary semigroup T. If *f* is fuzzy semiprime poideal iff 1 - f is a fuzzy n-system if $1 - f \neq \emptyset$

Proof: Let f be a fuzzy semiprime poideal of T.

Let $(1-f)(x) > t \Rightarrow f(x) < 1-t \Rightarrow x_{1-t} \notin f$

From corollary 3.19, $x_{1-t} \circ T \circ x_{1-t} \not\subseteq f$ since *f* is fuzzy semiprime

$$\Rightarrow (xsx)_{1-t} \not\subseteq f \Rightarrow f(xsx) < 1-t \Rightarrow (1-f)(xsx) > t$$

 $\Rightarrow 1 - f$ is a fuzzy n-system.

Conversely, suppose that 1 - f is fuzzy n-system and $1 - f \neq \emptyset$

Let g be fuzzy po ideal of T such that $g^3 \subseteq f$.

Suppose
$$g \not\subseteq f \Rightarrow$$
 there exist an ordered fuzzy points $x_{\lambda} \subseteq g$ and $x_{\lambda} \not\subseteq f$
 $\Rightarrow f(x) \leq \lambda \Rightarrow (1 - f)(x) > 1$

$$\Rightarrow f(x) < \lambda \Rightarrow (1 - f)(x) > 1 - \lambda$$

\Rightarrow there exists $c, s \in T$ such that $(1 - f)(c) > 1 - \lambda$ and $c \le xsx \Rightarrow f(c) < \lambda$

Since $c \le xsx \Rightarrow f(c) \ge f(xsx) \Rightarrow f(xsx) < \lambda$

But $x_{\lambda} \subseteq g$, By lemma 7.6.1(3) of E.Book, $x_{\lambda} o x_{\lambda} o x_{\lambda} \subseteq g o g o g = g^3 \subseteq f$

 $\Rightarrow (x_{\lambda} o x_{\lambda} o x_{\lambda})(t) \le f(t) \Rightarrow f(t) \ge \lambda \text{ for every } t \in T.$

But $xsx \in T \Rightarrow f(xsx) \ge \lambda$ which is contradiction. Therefore $g \subseteq f$.

 \Rightarrow fis fuzzy semiprime po ideal of T.

Theorem 3.21: If f is a fuzzy n-system of a poternary semigroup T and f(x) > t for some $x \in T$ then there exists a subset M of T such that f is fuzzy m-system on M.

Proof: Define $c_1 = x$ since $f(c_1) > t$ then there exists $c_2 \in T$, $s_1 \in T$ such that $f(c_2) > t$ and $c_2 \le c_1 s_1 c_1$ since f is fuzzy n-system.

since $f(c_2) > t$ then there exists $c_3 \in T, s_2 \in T$ such that $f(c_3) > t$ and $c_3 \le c_2 s_2 c_2$ and so on In general, if c_i has been defined, choose c_{i+1} as $c_{i+1} \in T, s_i \in T$ such that $f(c_{i+1}) > t$ and $c_{i+1} \le c_i s_i c_i$. Construct $M = \{c_1, c_2, \dots, c_i, c_{i+1}, \dots, \}$

clearly M is a subset of T. Let $c_i, c_j \in M$ for $i \le j \Rightarrow f(c_i) > t$, $f(c_j) > t$ and also clearly $c_{j+1} \in M \Rightarrow f$ is a fuzzy m-system on M.

References:

- [1]. Anjaneyulu A., Structure and ideal theory of semigroups Thesis, ANU (1980).
- [2]. Clifford A.H and Preston G.B., The algebraic theory of semigroupsvol I (American Math. Society, Province (1961)).
- [3]. Clifford A.H and Preston G.B., The algebraic theory of semigroupsvol II (American Math. Society, Province (1967)).
- [4]. G.Mohanraj, D.KrishnaSwamy, R.Hema, On fuzzy m-systems and n-systems of ordered semigroup, Annals of Fuzzy Mathematics and Informatics, Volume X, Number X, 2013.
- [5]. J.N.Mordeson, D.S.Malik, N.Kuroki, Fuzzy Semigroups, Springer-Verlag Berlin Heidelberg Gmbh, 2003(E.Book)
- [6]. L.A.Zadeh, Fuzzy Sets, Inform.Control.,8(1965) 338-353.
- [7]. N. Kehayopulu, M. Tsingelis, Fuzzy Sets in Ordered Groupoids, Semigroup forum 65(2002) 128-132.
- [8]. N. Kehayopulu, M.Tsingelis, On weakly Prime ideals of ordered Semigroups, Math. Japan. 35(1990) 1051-1056.
- [9]. N. Kehayopulu, On Prime, weakly prime ideals in ordered semigroups, Semigroup Forum 44(1992) 341-346.
- [10]. Padmalatha and A.Gangadhara Rao, Anjaneyulu A., Po Ideals in partially ordered semigroups, International Research Journal of Pure Algebra-4(6),2014.
- [11]. P.M.Padmalatha and A.Gangadhara Rao, Simple partially ordered semigroups, Global Journal of Pure and Applied Mathematics, Volume 10,, Number 3(2014).
- [12]. P.M.Padmalatha, A.Gangadhara Rao, P.RamyaLatha, Completely prime po ideals in ordered semigroups, Global Journal of Pure and Applied Mathematics, Volume 10,, Number 4(2014).
- [13]. Xiang-Yun Xie, Jian Tang, Prime fuzzy radicals and fuzzy ideals of ordered semigroups, Information Sciences 178 (2008), 4357–4374.
- [14]. X.Y.Xie, Fuzzy ideals in Semigroups, J.Fuzzy math.,7(1999)357-365.
- [15]. X.Y.Xie, On prime fuzzy ideals of a Semigroups, J.Fuzzy math.,8(2000)231-241.
- [16]. v.sivaramireddy studied on ideals in partial ordered ternary semi groups

J.M.Pradeep "Completely Semi Prime, Fuzzy Semiprime Ideals Of A Po Ternary Semigroup "International Journal of Engineering Science Invention (IJESI), vol. 07, no. 09, 2018, pp 29-34