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ABSTRACT: Butterworth Filter, with high adaptive ability, affords a continued fraction expansion method for 

the noisy image processing. However, the edge effect presents in its operation gives rise to issue, i.e. how to 

acquire genuine segmentation results to completely eradicate noises from the image. Accordingly, we propose a 

method to deal with the edge preservation caused by Butterworth Filter in the segmentation of an image signal 

and then enhanceits denoising performance. This method has two steps. The first step involves a diagonal 

operation through the Butterworth High Pass Filter model constructed by Singular Value Difference (SVD) with 

high generalization ability based on the original image pixel value. By applying, Singular Value Difference 

Butterworth High Pass Filter to the original satellite and natural images, the edge is said to be preserved and 

also the blurriness is said to be minimizedextracting region of interest with intense sharp images. The second 

step is the Sliding Neighborhood Deep Neural Network model for image denoising. This is an expansion by the 

Butterworth Filtering technique with respect to the neighborhood sliding operation to and beyond the edge of 

the data resulting from the first operation. Applications to remove the noise show that the edge preservation of 

the Butterworth Filteris improved by the SDB-SDNN methodto meet essential of the genuine segmentation 

results. They illustrate a good denoising effect of the Butterworth Filter by improving the edge preservation on 

the basis of the proposed method. Besides, the denoised image also preserves the image details in a sufficient 

manner by improving the peak signal-to-noise ratio. 

KEYWORDS: Butterworth Filter, High Pass Filter, Singular Value Difference, Sliding Neighborhood, Deep 

Neural Network 
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I. INTRODUCTION 

Several methods are proposed to denoise satellite and natural images and those images that split into 

sub components or channels for the purpose of denoising has become very popular. In our day to day life, digital 

images plays very notable role like they are exploited in monitoring the traffic in an intermittent manner, 

satellite television, identification of handwritten notes, signature validity and so on. While acquiring digital 

images, different kinds of noises are said to be introduced. Hence, denoising becomes more noteworthy than any 

other functions in image processing. Besides, preserving the image details and discarding the noise remains the 

main objective of image denoising methods.  

An optimal design of butterworth filter called, Fractional Order Low pass Butterworth Filters 

(FOLBFs) using Gravitational Search Algorithm (GSA) was designed in [1] to accomplish best quality with 

fastest convergence rate. FOFBFs using GSA [1] further exploited the non-linear, non-uniform design to 

accurately approximate the magnitude response based on third order approximations. Besides by applying 

continuous-time filter or third order, the response was said to be fast and computationally proficient manner. 

However, with the application of Butterworth Filters, though the design feasibility was found to be efficient for 

carrying out pass-band and stop-band regions for signal processing, application of Butterworth Filters for 

denoising was not focused. In this work, Singular Difference Butterworth Filtering model is designed with the 

objective of preserving the edges along with minimizing the blurriness of the input image via singular difference 

so that efficient denoising can be achieved.  

One of the most basic issues to be addressed in image processing is image denoising. Amongst several 

domains, filter provides the magnificent achievement in image denoising due to the sparseness and multifaceted 

composition. With the acceptance of Butterworth Filter for the last two decades, different methods and 

mechanisms have been investigated in filter domain. Electro Cardio Gram signals enhancement (ECG signals 

enhancement) was investigated in [2] to remove the noise like, electrode motion, baseline wander and so on. 
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This was performed by applying high pass butterworth filters. Besides, edge preserving filters were applied to 

eradicate the noise. Due to this, the signal-to-noise ratio (SNR) and root mean square error (RMSE) were found 

to be improved. Though noise were said to be improved, accuracy factor was not said to be concentrated. To 

lessen the noise and further to improve the rate of accuracy with minimum computational time and overhead, a 

deep neural network model with sliding neighborhood operation is applied to the edge preserved image.  

The main contribution of the paper can be summarized as follows. 

1. A novel high-performance Singular Difference Butterworth Filtering algorithm is proposed for filtering the 

natural and satellite images based on the singular difference, considering the pixel portion rather than the 

entire image to lessen the noise ratio and therefore improving the denoising accuracy.  

2. Two edges – one for magnitude and one for direction are proposed for the proposed algorithm to preserve 

the edges with minimum blurriness.  

3. The proposed Sliding Neighborhood Deep Neural Image Denoising algorithmlessens noise present in the 

edge preserved images by applying neighbourhood operation with deep insight, hence, decrease the 

computational time and overhead involved in image denoising.  

4. A detailed analysis of the parameter settings (i.e. PSNR, average processing time and computational 

overhead) is also given to show the impact they may have on the performance of the proposed Singular 

Difference Butterworth Filtering and Sliding Neighborhood Deep Neural Image Denoising algorithm. 

 

 This paper is ordered as follows. Section 2 introduces the related works on image denoising methods 

applied for different images. Section 3 presents the system model and technical details of SDB-SDNN method. 

Section 4 describes the experimental configurations and performance evaluations with discussions presented in 

Section 5. Finally, Section 6 concludes the paper. 

 

II. RELATED WORKS 
In [3], the problems related to correcting baseline and noise reduction was investigated by utilizing 

asymmetric penalty function. With this, not only optimal solution was said to be achieved, but denoising was 

also said to be performed in an effective manner. However, high quality denoising was not achieved. To address 

this issue, Structural Similarity optimized Weiner Filter was applied in [4] to execute image denoising. Here, 

instead of reducing the mean square error, structural similarity between the true and estimated images were 

maximized. Due to this, regardless of the type of images, superior denoising performance was achieved. Despite 

improvement in the performance, the denoising speed was said to be compromised. To solve this issue, 

Sequential Generalization of K-means algorithm was combined with Principal Component Analysis [5]. With 

this, higher Peak Signal to Noise Ratio was said to be achieved with better denoising.  

Redesigningan audio signal from multiple noisy signals necessitates to control the confront that diverge 

based on the conditions. A two-stage method was designed in [6] by combining best linear combination and 

applying a post filter to enhance the reconstruction. In [7], a coefficient updated version of Method of Optimal 

Directions (MOD) Dictionary Learning Algorithm (DLA) was designed with the objective of denoising the 

image with minimum computational time. In [8], an alternative training scheme with Denoising Auto-encoder 

(DA) was designed to perform image denoising and blind inpainting, therefore afford complex solutions. An 

overview of filtering methods for image denoising was presented in [9]. In [10],survey of imperative results 

related to mean and median absolute deviations was designed. 

In [11], removal of noise and therefore classification of normal and abnormal images was designed by 

applying the median filter and Pixel Surge Model (PSM) and Probabilistic Principal Component Analysis 

(PPCA) by applying morphological and filter operations. Further, image denoising was performed by applying 

neural network-based classification. Yet another noise suppression method was designed in [12] by applying 

Total Variation technique.  

With high reduction of reliability with respect to image noise poses severe threats in today‟s imaging 

systems. Besides, in healthcare, the presence of noise poses several limitations in the reliability of medical 

image data. For example, in radiology using computed tomography (CT), the presence of noise deteriorates the 

anatomical structure analysis and hence limits the diagnostic applications.  

In [13], Quantile Sparse Image was presented, therefore improving the optimization in terms of 

quantitative measures. Yet another sparse analysis priors was designed in [14] with the objective of providing a 

trade-off among computational load and performed through constrained dynamic method. However, the noise 

ratio was said to be compromised with increasing load. To conquer this issue, a local geometry based on 

directions of gradients and level lines was presented in [15]. Though noise was said to be reduced, the 

geometrical structure was said to be compromised. To solve this issue, dual projection method and iteratively 

reweighting method were designed in [16].  

During data acquisition, the digital images are captured with the help of sensors. At time, the digital 

images captured through sensors are frequently found to be affected by noise. Besides, these types of noise is 
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also said to be generated during transmission or image compression. Minimizing the noise and improving the 

image quality are considered as the main processes for all digital image processing tasks. 

In [17], patch-based denoising methods were introduced and were estimated with both qualitative and 

quantitative factors, therefore improving the computational time and quality. Yet another non-local means filter 

was investigated in [18] for image denoising with natural images. However, with the improper selection of 

threshold, image denoising was also said to be compromised. To address this issue, a threshold-free denoising 

procedure was designed in [19] by localizing the low and high frequency domains. A survey of image denoising 

algorithms was presented in [20].  

Distinguished from prior works, we establish a method of image denoising system to strengthen the 

image denoising accuracy with minimum time and overhead based on the deep neural network model in this 

paper.  

 

III. METHODOLOGY 
During the process of image acquisition, certain amount of noises are said to be combined with the pure 

image. Due to this, the edges are said to be compromised, further creating blurriness in the image and hence 

image denoising is said to occur. In this work, to preserve edge and minimize blurriness of the input image 

along with the image denoising, a Singular Difference Butterworth and Sliding Deep Neural Network (SDB-

SDNN) method is investigated. Figure 1 given below shows the block diagram of SDB-SDNN method.  

 

 
Figure 1 Block diagram of SDB-SDNN 

 

As shown in the figure, the SDB-SDNN method incorporates two steps. The first step is to preserve the 

edges with minimum blurriness using Singular Difference Butterworth Filter model. The second step is image 

denoising using Sliding Neighborhood Deep Neural Network model. The main aim here is to inspect their 

internal structures and identify their strengths and weaknesses to enable the proposal of image denoising with 

input satellite and natural images that integrates the strengths of these two models. 

 

3.1 Singular Difference Butterworth Filter model 

In this section, Singular Difference Butterworth Filter is applied to the input satellite and natural 

images with the objective of retaining or preserving the edges and reducing the blurriness. Usually, while 

applying filter, edges have to be retained or preserved. Here, the edges represent the boundaries between objects 
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or images. In this work, the estimates of Edge Singular Difference Butterworth Magnitude and Edge Singular 

Difference Butterworth Direction from Singular Difference Butterworth Filter results obtained by appropriate 

scaling are measured. Figure 2 shows the flow diagram of Singular Difference Butterworth Filter model.  

 

 
Figure 2 flow diagram of Singular Difference Butterworth Filter 

 

As shown in the figure, the design of Singular Difference Butterworth Filter model includes four different steps. 

The steps of the proposed Singular Difference Butterworth Filter model are given below. 

a. Generate the Singular Difference model with different intrinsic portions of actual and real images with 

noise variance.  

b. Use the Butterworth Filter to segment the new noisy image into its low-pass filters and high-pass filters, and 

then calculate the size and estimate the variance of the noise. 

c. Obtain Singular Difference by applying the noise variance and image size for corresponding diagonal 

portions of the image.  

d. Finally, obtain the edge direction and magnitude with the objective of retaining the edges and reduce the 

blurriness.  

With the above four steps, let us consider the real image regarded as a mixture of the noise and pure.This is 

expressed as given below. 

𝑞 𝑎, 𝑏 = 𝑝 𝑎, 𝑏 +  𝑠 𝑎, 𝑏         (1) 

 

 From the above equation (1), „𝑞 𝑎, 𝑏 ‟ represents the real image with noises, „𝑝 𝑎, 𝑏 ‟ represents the 

actual image and „𝑠 𝑎, 𝑏 ‟ denotes the noise present in the image. Then, the actual image and noisy images are 

further formulated as given below. 

 

𝑝 𝑎, 𝑏 =   𝑝𝑖 𝑎, 𝑏 + 𝑟𝑝 𝑎, 𝑏 𝑛
𝑖=1        (2) 

𝑠 𝑎, 𝑏 =   𝑠𝑖 𝑎, 𝑏 +  𝑟𝑠 𝑎, 𝑏 𝑛
𝑖=1        (3) 

 

From the above equation (2) and (3) „𝑝𝑖 𝑎, 𝑏 ‟ and „𝑠𝑖 𝑎, 𝑏 ‟ represents the intrinsic pixel portions of 

the actual image and real image with noises respectively. Next, „𝑟𝑝 𝑎, 𝑏 ‟ and „𝑟𝑠 𝑎, 𝑏 ‟ represents the residual 

pixel portions of the actual image and real image with noises respectively. Then by substituting the above two 

equations (2) and (3), the equation (1) is written as given below.  
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𝑞 𝑎, 𝑏 =   𝑝𝑖 𝑎, 𝑏 + 𝑟𝑝 𝑎, 𝑏 𝑛
𝑖=1 +  𝑠𝑖 𝑎, 𝑏 +  𝑟𝑠 𝑎, 𝑏 𝑛

𝑖=1    (4) 

 

Then, with the real image with noise, using the Butterworth Filter, a satellite or natural image is said to 

be segmented into its low-pass and high-pass filters. The low-pass filterspart represents the actual pixel portions 

of an image, while the three high-pass filter parts represent the detailed information of an image. They are the 

horizontal „𝐻‟, vertical „𝑉‟, and diagonal parts „𝐷‟ respectively. In this work, the diagonal parts are considered 

for further processing because the boundaries between objects are of higher interest. Hence, new Butterworth 

coefficients are evaluated by thresholding the original Butterworth coefficients. In the proposed work, the 

thresholds are determined by utilizing the variance „𝜎‟ of the noise. It is formulated as given below.  

𝜎 =  
𝐴𝑣𝑔 𝐻𝐵

𝑛  

0.674
          (5) 

 

From the above equation (5), the variance „𝜎‟ of the noise denotes the ratio of average of the Butterworth 

coefficients [1] with respect to the diagonal portion of the image (i.e. denoting the high pass butterworth filter). 

The numerator denotes the mean absolute deviation [3].  

 

 𝑆𝐷𝐷 𝑝 𝑎, 𝑏  =  𝑠𝑉𝐷 𝜎 𝑓𝑛 𝑆𝑖𝑧𝑒 𝑝 𝑎, 𝑏         (6) 

 

From the above equation (6), the singular difference „𝑆𝐷‟ with respect to the actual image „𝑝 𝑎, 𝑏 ‟ is 

obtained by applying the noise variance „𝑠𝑉𝐷 𝜎 ‟ for the corresponding diagonal portion of the image „𝐷‟ and 

the size of the actual image „𝑆𝑖𝑧𝑒 𝑝 𝑎, 𝑏  ‟. Followed by the identification of singular difference, the edge 

magnitude and edge direction are mathematically evaluated as given below.  

 

 𝐸𝑑𝑔𝑒𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  𝐻𝑝 𝑎, 𝑏 =  
1

1+  2− 1  
𝐷𝑖𝑠𝑝  𝑎 ,𝑏 

𝐷𝑖𝑠 0
 
2𝐷     (7) 

From the above equation (7), „𝐷‟ represent the order and in the proposed work, it represents the diagonal portion 

of the image with „𝐷𝑖𝑠0 ‟ denoting the specified distance from the origin with respect to the actual image 

„𝑝 𝑎, 𝑏 ‟.  

 

𝐸𝑑𝑔𝑒𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  𝐷𝑖𝑠𝑝 𝑎, 𝑏 =   𝑎2 + 𝑏2     (8) 

 

The pseudo code representation of Singular Difference Butterworth Filter is given below.  

 
Input: actual image „𝑝 𝑎, 𝑏 ‟, noisy image„𝑠 𝑎, 𝑏 ‟, intrinsic pixel portions of the actual image „𝑝𝑖 𝑎, 𝑏 ‟, intrinsic pixel 

portions of the real image with noises „𝑠𝑖 𝑎, 𝑏 ‟, residual pixel portions of the actual image „𝑟𝑝 𝑎, 𝑏 ‟, residual pixel 

portions of the real image with noises „𝑟𝑠 𝑎, 𝑏 ‟ 

Output: Edge Preserved Image „𝑒𝑝𝑖 =  𝑒𝑝1 , 𝑒𝑝2 , … , 𝑒𝑝𝑛 ‟ 

1: Begin 
2:          For each actual and noisy image real image with noises  

3:                         Evaluate real image with noises using (1) 

4:                         Evaluate actual image and real image with noises using (2) and (3)  

5:                         Measure variance „𝜎‟ using (5) 
6:                         Measure singular difference using (6) 

7:                         Evaluate edge direction using (7) 

8:                         Evaluate edge magnitude using (8) 
9:           End for 

10: End  

 

Algorithm 1 Singular Difference Butterworth 

 

As given in the above Singular Difference Butterworth Filtering algorithm, for each actual and noisy 

real image with noises, the purpose of this algorithm is to not only retain the edges but also minimize the 

blurriness. After training the model using satellite and natural images (that includes large set noisy and denoised 

images), magnificent results that are comparable to the results of Singular Difference Butterworth Filtering 

algorithmis said to be arrived at in much less computational time. 

 

3.2 Sliding Neighborhood Deep Neural Network model  

Once the edges of the input images have been retained with minimum blurriness, the next step in the 

design is to remove the noise present in the images. In this work, as the objective remains in concentrating on a 

learning based model, the selection of image denoising model depends on the complexity of the function to be 

learned. As this work deals with satellite and natural images, the model selected have to accommodate all the 
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essential image features, competent of learning and extracting region of interest with intense sharpness from the 

image. Hence, Sliding Neighborhood Deep Neural Network model has been selected that has the capability of 

modeling high-level abstractions in image features.  

In Sliding Neighborhood Deep Neural Network model, image denoising is executed with single pixel 

operation rather than processing the entire image at a single sequence. The Sliding Neighborhood Deep Neural 

Network operation is an operation that is conducted with a pixel at a time with deeper insights according to the 

edge preserved images as input. Here, the value of the output pixel is measured by applying the corresponding 

input pixel's edge-preserved neighborhood value.  

The edge-preserved pixel's neighborhood represents certain set of pixels, based on their locations 

corresponding to that pixel, also referred to as the midpoint pixel. Besides, the edge-preserved pixel's 

neighborhood corresponds to rectangular section by traversing from one portion to the next in an image matrix 

with the neighborhood section traversing the same order. The midpoint pixel represents the real pixel in the edge 

preserved image (with lesser blurriness) being processed by the operation.  

If the neighborhood possesses odd number of rows and columns, the midpoint pixel is said to be the 

center of the neighborhood. On the other hand, if one of the dimensions has even representation, the midpoint 

pixel is left of midpoint or just above midpoint. Finally, an activation function is applied to the midpoint value 

to perform image denoising with minimum error. Figure 3 shows the block diagram of Sliding Neighborhood 

Deep Neural Network model.  

 

 
Figure 3 Block diagram of Sliding Neighborhood Deep Neural Network model 

 

 As shown in the figure, consider a neural network with „𝑖‟ input, „𝑗‟ output units with any number of 

hidden units. When the input pattern „𝑒𝑝𝑖 ‟ from a training set is presented to the network, it generates an output 

„𝑞𝑖‟ different in general from the target „𝑡𝑖‟. In the corresponding hidden layer, the value from each input unit is 

multiplied with the weight „𝑤𝑖𝑗 ‟ and the weighted average of input patterns „𝑊𝐴𝑉𝐺 𝑒𝑝𝑖 ‟ are derived. It is 

formulated as given below. 

 

𝑊𝐴𝑉𝐺 𝑒𝑝𝑖 =
 𝑤1𝑗 + 𝑤2𝑗 + ….+𝑤𝑖𝑗  

𝑛
      (9) 

 

Besides, the error between „𝑞𝑖‟ and „𝑡𝑖 ‟ has to be minimized for effective denoising of satellite and natural 

images. It is formulated as given below.  

 

𝐸 =  
1

2
  𝑞𝑖 −  𝑡𝑖 

2𝑛
𝑖=1         (10) 

 

From the above equation (10), the error „𝐸‟ is used to measure the change in hidden to output layer 

weights and the change in input to hidden layer weights, with the objective of minimizing the global error rate. 

This process is reiterated foreach pixel in the input image. With the error „𝐸‟ evaluated as given in the above 

equation (10), to summarize how an edge-preserved sliding neighborhood operation with deep neural network is 

performed, let us consider an edge preserved image with minimum blurriness obtained from the above sections 



Satellie and Natural Image Denoising Using Singular Difference Butterworth and Sliding….  

www.ijesi.org                                                          93 | Page 

as input. Here, a single pixel is chosen rather than entire image. Then, the pixel‟s neighborhood value is 

obtained. Followed by which the midpoint pixel is mathematically evaluated as given below.  

 

 𝑀𝑃 = 𝐹𝐿𝑂𝑂𝑅    𝑖, 𝑗 +  1 /2       (11) 

 

From the above equation (11), for any „ 𝑖, 𝑗 ‟ neighborhood, the midpoint pixel „𝑀𝑃‟ return the greatest integer 

value „𝐹𝐿𝑂𝑂𝑅‟ with „𝑖‟ rows and „𝑗‟ columns respectively.  Followed by the evaluation of the midpoint, an 

activation function is applied to the values of the pixels in the neighborhood. This is mathematically evaluated 

as given below. 

 

𝜎 𝑝 =  
1

1+ 𝑒−𝑝          (12) 

 

 From the above equation (12), the activation function „𝜎()‟ for image „𝑝‟ with „𝑎‟ and „𝑏‟ representing 

the rows and columns is measured according to the error function „𝑒‟ over output neurons for each image. The 

pseudo code representation of Sliding Neighborhood Deep Neural Image Denoising is given below.  

 
Input: Edge Preserved Image „𝑒𝑝𝑖 =  𝑒𝑝1 , 𝑒𝑝2 , … , 𝑒𝑝𝑛 ‟,  

Output: Denoised image 

1: Begin 

2:           For each Edge Preserved Image „𝑒𝑝𝑖‟ 

3:                    Repeat  

4:                             Measure the weighted average of input patterns using equation (9) 

5:                             Measure the error function using equation (10) 

6:                             Measure midpoint pixel using equation (11) 
7:                             Evaluate the activation function using equation (12) 

8:                   Until (each pixel in the input  image is processed) 

9:          End for  

10: End  

 

Algorithm 2 Sliding Neighborhood Deep Neural Image Denoising 

 

As given in the above Sliding Neighborhood Deep Neural Image Denoising algorithm, each Edge 

Preserved Image „𝑒𝑝𝑖 ‟ given as input, the objective here remains in minimizing the noise present in the image by 

applying the sliding neighborhood operation. Initially, the weight is derived by measuring the average of input 

patterns. Followed by which, error function is obtained. Then, the pixel‟s neighborhood value is obtained by 

measuring the midpoint pixel. Finally, the activation function is applied to the midpoint pixel value and this 

process is repeated for all pixels in the input image with minimum error rate.  

 

IV. EXPERIMENTAL SETTINGS 
In this paper, the satellite [22] and natural images [21] database is exploited to verify average 

processing time and image denoising accuracy of the experimental method. The average processing time and 

image denoising accuracy of the test method was compared with (Fractional Order Low pass Butterworth Filters 

(FOLBFs) using Gravitational Search Algorithm (GSA)) [1] and Electro Cardio Gram signals enhancement 

(ECG signals enhancement) [2]. The evaluation is established by using the following parameters: 

 First, to measure the image denoising accuracy, the noise level has to be measured. Therefore, the noise 

factor is analyzed by measuring the PSNR. PSNR measures the quality of reconstruction of denoised signal. The 

signal here refers to the original data and the noise is the error introduced by denoising. It is mathematically 

evaluated as given below. 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10  
𝐿2

𝑀𝑆𝐸
        (13)  

 From the above equation (13), „𝐿‟ represents the peak signal level, whereas „𝑀𝑆𝐸‟ represents the Mean 

Squared Error [23], which is the pixel value of the image. The value of MSE is evaluated as given below.  

 

 𝑀𝑆𝐸 =  
1

𝑘∗𝑘
    𝑝 𝑖 − 𝑗 −  𝑠 𝑖 − 𝑗  2𝑛

𝑗 = 1
𝑛
𝑖=1     (14) 

 

Where „𝑝 𝑖, 𝑗  ‟ and „𝑠 𝑖, 𝑗 ‟ are the pixel intensity values of the original image and the noisy image respectively 

and „𝑘 ‟ symbolizes the size of input satellite and natural images. Next, the average processing time is 

mathematically evaluated as given below. 
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𝐴𝑃𝑇 = 𝑇𝑖𝑚𝑒  𝑃𝑃 +  𝑇𝑖𝑚𝑒  𝐼𝐷       (15) 

 

From the above equation (15), the average processing time „𝐴𝑃𝑇‟, refers to the time consumed during 

preprocessing „𝑃𝑃‟ and the time consumed during image denoising „𝐼𝐷‟. It s measured in milliseconds (ms). 

Here, the time consumed during preprocessing includes thetime consumed to extract the image with respect to 

magnitude ad direction. Besides, the time consumed during image denoising involves the time consumed for 

evaluating the midpoint function and activation function respectively. Finally, the computational overhead is 

mathematically evaluated as given below. 

 

 𝐶𝑂 =  𝑘 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒  𝑃𝑃 +  𝑆𝑡𝑜𝑟𝑎𝑔𝑒  𝐼𝐷      (16) 

From the above equation (16), the computational overhead „𝐶𝑂‟ is measured according to the samples provided 

as input „𝑘‟ and the storage consumed to carry out the preprocessing task „𝑆𝑡𝑜𝑟𝑎𝑔𝑒  𝑃𝑃 ‟ and image denoising 

task „𝑆𝑡𝑜𝑟𝑎𝑔𝑒  𝐼𝐷 ‟ respectively. It is measured in terms of kilobytes (KB). Lower communication overhead 

improves the efficiency of the method.  

 

V. DISCUSSION 
 In this section, the performance of the SDB-SDNN method is evaluated and compared it with the 

(Fractional Order Low pass Butterworth Filters (FOLBFs) using Gravitational Search Algorithm (GSA)) [1] and 

Electro Cardio Gram signals enhancement (ECG signals enhancement) [2].  

 

5.1 Peak Signal-to Noise Ratio 

 In this section, we would like to evaluate the peak signal-to noise ratio of SDB-SDNN method and 

compare it with the FOLBFs using GSA [1] and ECG signals enhancement [2] based on the number of samples 

provided as input for image denoising in the comparison experiments.  The sample calculations and tabulation 

column is represented as given below.  

 

Sample calculations  

 Proposed SDB-SDNN: With satellite image provided as input for conducting experiments, the value of 

MSE being „280‟, the PSNR is measured. Accordingly, for „10‟ images given as input for conducting 

experiments, the PSNR is found to be „95.9𝑑𝐵‟.  

 

𝑃𝑆𝑁𝑅 (𝑢𝑠𝑖𝑛𝑔 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑚𝑎𝑔𝑒) = 10 log 10 ∗  
255

280
= 9.59𝑑𝐵 

 

In a similar manner, with natural image given as input, the value of MSE being „265‟, the PSNR is measured. 

Then, for „10‟ images given as input, the PSNR is found to be ‟98.3𝑑𝐵‟. 

 

𝑃𝑆𝑁𝑅 (𝑢𝑠𝑖𝑛𝑔 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑖𝑚𝑎𝑔𝑒) = 10 log 10 ∗  
255

265
= 9.83𝑑𝐵 

 FOLBFs using GSA: With satellite image provided as input for conducting experiments, the value of MSE 

being „312‟, the PSNR is measured for FOLBFs using GSA [1]. Accordingly, for „10‟ images given as 

input for conducting experiments, the PSNR is found to be „91.2𝑑𝐵‟. 

 

𝑃𝑆𝑁𝑅 (𝑢𝑠𝑖𝑛𝑔 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑚𝑎𝑔𝑒) = 10 log 10 ∗  
255

312
= 9.12𝑑𝐵 

 

In a similar manner, with natural image given as input, the value of MSE being „320‟, the PSNR is measured for 

FOLBFs using GSA [1]. Then, for „10‟ images given as input, the PSNR is found to be ‟90.1𝑑𝐵‟. 

 

𝑃𝑆𝑁𝑅 (𝑢𝑠𝑖𝑛𝑔 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑖𝑚𝑎𝑔𝑒) = 10 log 10 ∗  
255

320
= 9.01𝑑𝐵 

 ECG signals enhancement: With satellite image provided as input for conducting experiments, the value 

of MSE being „345‟, the PSNR is measured for ECG signals enhancement. Accordingly, for „10‟ images 

given as input for conducting experiments, the PSNR is found to be ‟86.6𝑑𝐵‟. 

𝑃𝑆𝑁𝑅 (𝑢𝑠𝑖𝑛𝑔 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑚𝑎𝑔𝑒) = 10 log 10 ∗  
255

345
= 8.68𝑑𝐵 

 

In a similar manner, with natural image given as input, the value of MSE being „360‟, the PSNR is measured for 

ECG signals enhancement. Then, for „10‟ images given as input, the PSNR is found to be ‟85.0𝑑𝐵‟. 
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𝑃𝑆𝑁𝑅 (𝑢𝑠𝑖𝑛𝑔 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑖𝑚𝑎𝑔𝑒) = 10 log 10 ∗  
255

360
= 8.50𝑑𝐵 

 

The tabular representation for measuring peak signal to noise ratio (PSNR) with satellite and natural images 

provided as input is given below.  

 

Table 1 Comparison among the designed SDB-SDNN in terms of PSNR  
No. of 

images 

PSNR (dB) [using satellite images] PSNR (dB) [using natural images] 

SDB-SDNN FOLBFs 

using GSA 

ECG signals 

enhancement 

SDB-SDNN FOLBFs 

using GSA 

ECG signals 

enhancement 

10 95.9 91.2 86.8 98.3 90.1 85.08 

20 91.5 87.5 84.1 93.5 88.5 82.4 

30 93.5 82.5 80.2 95.8 82.3 80.1 

40 95.8 80.4 78.4 97.2 85.8 83.5 

50 82.4 75.2 72.1 85.6 82.4 80.2 

60 85.6 78.9 73.5 88.9 83.5 80.5 

70 88.9 90.3 82.5 90.2 85.8 82.3 

80 90.3 82.4 80.2 92.4 88.2 83.1 

90 92.4 85.8 81.4 94.5 90.1 88.5 

100 88.5 86.1 83.2 90.1 87.6 84.2 

 

Table 1 given above shows the PSNR of all the three methods using satellite and natural images.  This 

experiment is set to verify the PSNR efficiency with respect to number of samples provided as input for image 

denoising. In this experiment environment, we combine two different functions, i.e. edge magnitude and edge 

direction to achieve the high efficiency PSNR rate. The PSNR is compared with FOLBFs using GSA [1] and 

ECG signals enhancement [2] by capturing the same amount of samples. As illustrated in the above table, the 

experimental results of PSNR rate for different number of samples with same size (e.g. 10, 20, 30,….,100) in the 

preprocessing phase or filtering is considered. From the experiment, it is inferred that the PSNR rate is inversely 

proportional to the number of sample images provided as input and to handle the same number of samples for 

image denoising, SDB-SDNN method generates minimum error than [1] and [2], both using satellite and natural 

images. Hence, as given in the table, the PSNR rate as is inversely proportional, the occurrence of noise ratio 

depends only on the type of image and image size and not on the number of sample images considered for 

experimentation. In other words, the PSNR rate for image denoising in SDB-SDNN method is higher than those 

in [1] and [2]. This is because of the application of Singular Difference Butterworth Filter in the SDB-SDNN 

method. The reasons for that are twofold.  First, the former two methods performs the preprocessing for noise 

removal using continued fraction expansion methods with the aid of Butterworth filer mechanism whereas in 

SDB-SDNN method, with the objective of retaining the edges and reduce the blurriness, both edge magnitude 

and edge direction were considered, therefore reducing the noise ratio. Second, for performing filtering, the 

existing [1] and [2] methods applied single edge along with guided filter to remove the noise, which is said to be 

compromised in case of the large samples, whereas in SDB-SDNN method, edges are said to be preserved with 

minimum blurriness due to the application of Singular Difference Butterworth Filter. This in turn improves the 

PSNR rate using SDB-SDNN method by 8% compared to [1] and 13% compared to [2] with satellite images as 

input and 7% compared to [1] and 12% compared to [2] with natural images as input. 

 

5.2 Average processing time 

 Followed by PSNR rate, second the average processing time using the three different methods is 

analyzed based on the sample images provided as input.  The sample calculations and tabular representation of 

average processing time is given below.  

 

Sample calculations 

 Proposed SDB-SDNN: With the preprocessing and image denoising time being „0.031𝑚𝑠‟ and „0.128𝑚𝑠‟ 

for single satellite image, the average processing time using satellite image is given below.  

𝐴𝑃𝑇 (𝑢𝑠𝑖𝑛𝑔 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑚𝑎𝑔𝑒) = 10 ∗  0.031𝑚𝑠 + 0.128𝑚𝑠 = 1.59𝑚𝑠 

In a similar manner, the preprocessing and image denoising time being „0.036𝑚𝑠‟ and „0.133𝑚𝑠‟ for single 

natural image, the average processing time using natural image is given below.  

𝐴𝑃𝑇 (𝑢𝑠𝑖𝑛𝑔 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑖𝑚𝑎𝑔𝑒) = 10 ∗  0.036𝑚𝑠 + 0.133𝑚𝑠 = 1.69𝑚𝑠 

 FOLBFs using GSA: With the preprocessing and image denoising time being „0.038𝑚𝑠‟ and „0.141𝑚𝑠‟ 

for single satellite image, the average processing time using satellite image is given below.  

 

𝐴𝑃𝑇 = 10 ∗  0.038𝑚𝑠 + 0.141𝑚𝑠 = 1.79𝑚𝑠 
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In a similar manner, the preprocessing and image denoising time being „0.042𝑚𝑠‟ and „0.165𝑚𝑠‟ for single 

natural image, the average processing time using natural image is given below.  

𝐴𝑃𝑇 = 10 ∗  0.042𝑚𝑠 + 0.165𝑚𝑠 = 2.07𝑚𝑠 

 ECG signals enhancement: With the preprocessing and image denoising time being „0.048𝑚𝑠 ‟ and 

„0.163𝑚𝑠‟ for single satellite image, the average processing time using satellite image is given below.  

𝐴𝑃𝑇 = 10 ∗  0.048𝑚𝑠 + 0.163𝑚𝑠 = 2.11𝑚𝑠 
 

In a similar manner, the preprocessing and image denoising time being „0.052𝑚𝑠‟ and „0.175𝑚𝑠‟ for single 

natural image, the average processing time using natural image is given below.  

𝐴𝑃𝑇 = 10 ∗  0.052𝑚𝑠 + 0.175𝑚𝑠 = 2.27𝑚𝑠 
 

Table 2Comparison among the designed SDB-SDNN in terms of Average Processing Time  
No. of 

images 

Average Processing Time (ms) [using satellite 

images] 

Average Processing Time (ms) [using natural 

images] 

SDB-SDNN FOLBFs 
using GSA 

ECG signals 
enhancement 

SDB-SDNN FOLBFs 
using GSA 

ECG signals 
enhancement 

10 1.59 1.79 2.11 1.69 2.07 2.27 

20 2.85 2.95 3.15 3.15 3.35 4.55 

30 4.53 5.55 6.85 5.85 6.16 6.25 

40 6.85 7.35 7.85 7.35 7.85 8.55 

50 9.55 10.25 11.35 10.25 11.35 12.45 

60 9.65 11.15 13.55 10.85 12.45 14.15 

70 10.86 12.35 14.52 11.45 14.55 16.32 

80 11.35 13.45 15.66 14.35 15.35 17.85 

90 12.45 14.55 16.15 15.55 17.35 19.25 

100 15.35 16.55 18.35 15.85 19.42 22.35 

 

The targeting results of average processing time using SDB-SDNN method is compared with two state-

of-the-art methods [1] and [2] in table 2 is presented for comparison based on the varied number of satellite and 

natural sample images as input. The SDB-SDNN method differs from the [1] and [2] in that we have applied 

Sliding Neighborhood Deep Neural Image Denoising algorithm for image denoising. With simulation being 

conducted for 10 sample images provided as input using satellite and natural images, Singular Difference 

Butterworth Filtering was first applied. With this filter, the singular difference was exploited instead of the 

entire image for extracting the edge magnitude and direction, therefore lessens the computational time. Further 

by considering the noise variance and size of the image for further processing, diagonal portions of the images 

were further considered because of which, the boundaries were said to be extracted in an efficient manner. 

Finally, by applying the Sliding Neighborhood Deep Neural Network for image denoising with the edge 

magnitude and edge direction portions reduces the noise factor. With the neighborhood factor considered for 

image denoising, the average processing time for image denoising is said to be reduced. In this way, the average 

processing time is found to be reduced by 11% compared to [1] and 22% compared to [2] using satellite images. 

In a similar manner, the average processing time is found to be reduced by 89% compared to [1] and 22% 

compared to [2] using natural images.  

 

5.3 Computational overhead 

Finally, the computational overhead using three different methods is analyzed. In SDB-SDNNmethod, 

computational overhead measures the storage consumed to carry out the preprocessing and image denoising. 

The computational overhead is evaluated in kilobytes (MB). The sample calculations along with the graphical 

representation are given below.  

 

Sample calculations 

 Proposed SDB-SDNN: With „10 ‟ samples considered as experimentation using satellite images, the 

storage required for preprocessing was found to be „12𝐾𝐵‟ and the storage required for image denoising 

was found to be „15𝐾𝐵‟ using SDB-SDNN. Then the computational overhead is as given below.  

𝐶𝑂 = 10 ∗  12𝐾𝐵 + 15𝐾𝐵 = 270𝐾𝐵  
 

 

 FOLBFs using GSA: With „10‟ samples considered as experimentation using satellite images, the storage 

required for preprocessing was found to be „16𝐾𝐵‟ and the storage required for image denoising was found 

to be „20𝐾𝐵‟. Then the computational overhead is as given below.  

𝐶𝑂 = 10 ∗  16𝐾𝐵 + 20𝐾𝐵 = 360𝐾𝐵  
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 ECG signals enhancement: finally, with „10‟ samples considered as experimentation using satellite 

images, the storage required for preprocessing was found to be „21𝐾𝐵‟ and the storage required for image 

denoising was found to be „25𝐾𝐵‟ using ECG signals enhancement. Then the computational overhead is as 

given below.  

𝐶𝑂 = 10 ∗  21𝐾𝐵 + 25𝐾𝐵 = 460𝐾𝐵  
 Computational overhead incurred during filtering is one of the challenges to be addressed for image 

denoising systems. With the increase in the number of sample images, minimization of computational overhead 

cannot be attained. But, optimization can be achieved. The comparison of computational overhead for SDB-

SDNN method is measured and compared with [1] and [2] and is plotted in figure 4. The results reported in the 

figure confirm that with the increase in the number of satellite images given as input, the computational 

overhead also gets increased.  

 

 
Figure 4 Computational overhead comparisons for SDB-SDNN, FOLBHs using GSA and ECG signals 

enhancement  

 

Figure 4 given above shows the comparison performance of computational overhead for 150 different 

satellite images. As a result, 150 different satellite images are observed in x axis and computational overhead is 

observed in the y axis. With increase in the number of samples using the satellite images with different sizes, the 

computational overhead for image denoising also increases. Due to this, the computational overhead increases 

with the increase in the number of input images. As a simulation, with „10‟ satellite samples considered for 

experimentation, the storage required was found to be „270𝐾𝐵‟ using SDB-SDNN method, „460𝐾𝐵‟ when 

applied with FOLBHs using GSA [1] and „460𝐾𝐵‟ using ECG signals enhancement. However, performance 

analysis on an average found SDB-SDNN method comparatively better than [1] and [2]. This is because of the 

sliding neighborhood operation using the Sliding Neighborhood Deep Neural Image Denoising algorithm. By 

applying Sliding Neighborhood Deep Neural Image Denoising algorithm, weight is measured by the average of 

input patterns that has already being filtered by applying the Singular Difference Butterworth. Here, the 

performance of filtering is performed via edge magnitude and edge direction that helps in preserving the edge 

and minimizing the blurriness rate. Though the edges were preserved using [1] and [2], but, the correlation 

factor were not considered during noise removal. Hence, minimum amount of noise is said to be found in the 

edges, therefore compromising the image denoising factor. Furthermore, by applying singular difference, single 

pixel operationis considered rather than, the entire image at a single sequence. As the result, the complexity 

involved in computation is said to be reduced by applying the SDB-SDNN method. As a result, the 

computational overhead for image denoising is found to be comparatively lesser using SDB-SDNN method by 

24% compared to [1] and 38% compared to [2]. 

 

VI. CONCLUSION 
 In this paper, Singular Difference Butterworth and Sliding Deep Neural Network (SDB-SDNN) 

method is proposed. The method consists of two parts, image filtering and image denoising. To start with, 

initially, image filtering is performed by applying the Singular Difference Butterworth Filter model. Here, 

singular difference is evolved intrinsic portions of the actual image and real images with noise variance. 

Followed by which, Butterworth Filter is applied to the singular difference resultant values for the purpose of 
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segmenting the noisy image into its low-pass filters and high-pass filters. Here, the high-pass filter diagonal 

portions of the images were exploited for extracting edge magnitude and edge direction, with which the edge 

preserved image with minimum blurriness was said to be produced. Next, image denoising was performed with 

the edge preserved minimum blurriness image by applying the Sliding Neighborhood Deep Neural Image 

Denoising algorithm. With the application of this algorithm, midpoint pixel value was evaluated by applying 

pixel‟s neighborhood value, therefore ensuring minimum error or peak signal to noise ratio. The SDB-SDNN 

are implemented to validate the proposed method. Extensive experiments conducted demonstrate the 

effectiveness and robustness of the proposed method in terms of PSNR, average processing time and 

computational overhead efficiency.   
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