On Commutativity of Non-Associative Primitive Rings with $(x y)^{2}-\mathbf{y}\left(\mathbf{x}^{2} \mathbf{y}\right) \in \mathbf{Z}(\mathbf{R})$

Madana Mohana Reddy ${ }^{1 *}$ and Shobha Latha ${ }^{2}$
${ }^{1}$ Department of Mathematics, Rayalaseema University, Kurnool -518007, AP. India
${ }^{2}$ Department of Mathematics, S.K.Univesity, Ananthapuramu - 515003,AP.India.
Corresponding Author: Madana Mohana Reddy

Abstract

$\overline{\text { Abstract: In this section we have proved that an associative semi prime ring in which }(x y)^{2}-y x^{2} y \text { is central, }}$ is commutative. In this section, we prove a similar result for non-associative primitive rings. Ram Awatar [6] generalized Gupta's [5] result and proved that if R is an associative semi prime ring in which $x y^{2} x-y x^{2} y$ is central, then R is commutative. In this section we show that if R is an alternative prime ring in which $\left(x y^{2}\right) x-$ ($y x^{2}$) yis central, then R is commutative. Key Words: Primitive Ring, Center, Commutativity, Alternative Prime Ring.

I. Introduction

The study of associative and non- associative rings has evoked great interest and assumed importance. The results on associative and non- associative rings in which one does assume some identities in the center have been scattered throughout the literature.

Many sufficient conditions are well known under which a given ring becomes commutative. Notable among them are some given by Jacobson, Kaplansky and Herstein. Many Mathematicians of recent years studied commutativity of certain rings with keen interest. Among these mathematicians Herstein, Bell, Johnsen, Outcalt, Yaqub, Quadri and Abu-khuzam are the ones whose contributions to this field are outstanding.

II. Preliminaries

Non-Associative Ring:

If R is an abelian group with respect to addition and with respect to multiplication R is distributive over addition on the left as well as on the right.
For every elements x, y, z of $\mathrm{R}(\mathrm{x}+\mathrm{y}) \mathrm{z}=\mathrm{xz}+\mathrm{yz}, \mathrm{z}(\mathrm{x}+\mathrm{y})=\mathrm{zx}+\mathrm{zy}$
Alternative rings, Lie rings and Torsion rings are best examples of these non-associative rings.
Alternative RingFor every x and y in R is $(x x) y=x(x y), y(x x)=(y x) x$ then R is said to be alternative ring on the left as well as left.

Commutator:

For every x, y in a ring R satisfying $[x, y]=x y-y x$ then $[x, y]$ is called a commutator

Commutative Ring:

For every x , y in a ring R if $\mathrm{xy}=\mathrm{yx}$ then R is called a commutative ring.
Non-commutative ring is split from the commutative ring, i.e., R is not commutative with respect to multiplication. i.e., we cannot take $x y=y x$ for every x, y in R as an axiom.

Prime Ring:

A ring R is called a prime ring if whenever A and B are ideals of R such that $A B=0$ then either $A=0$ or $B=0$.

Primitive Ring:

A ring R is defined as primitive in case it possesses a regular maximal right ideal, which contains no two-sided ideal of the ring other than the zero ideal.

Torsion-Free ring:

If R is m -torsion free ring, then $\mathrm{mx}=0$ implies $\mathrm{x}=0$ for positive integer m and x is in R .

Center:

In a ring R , the center denoted by $\mathrm{Z}(\mathrm{R})$ is the set of all elements $x \in R$ such that $\mathrm{xy}=\mathrm{yx}$ for all $x \in R$. It is important to note that this definition does not depend on the associative of multiplication and in fact, we shall have occasion to deal with derivation of non-associative algebras.

III. Main Results

Theorem 1 :Let R be a non-associative primitive ring with unity satisfying $\left(x y^{2}\right)-y\left(x^{2} y\right) \in Z(R)$ for all x, y in R Then R is a commutative.

Proof: By hypothesis $(x y)^{2}-y\left(x^{2} y\right) \in Z(R)$
for all x , y in R
Replacing x by $x+1$ in 1.1 , we get $\left((x+1)^{2} y^{2}-y\left((x+1)^{2} y\right) \in Z(R)\right.$.
i.e., $(x y+y)^{2}-y\left(x^{2} y+2 x y+y\right) \in Z(R)$

Using 1.1, we obtain $(x y) y-y(x y) \in Z(R)$
Now replacing y by $y+1$ in 1.2 , and using 1.2 we get $x y-y x \in Z(R)$.
If R is a primitive ring then R has a maximal right ideal which contains no non- zero ideal of R. Consequently, we obtain $(x y-y x) R=0$. This further yields $x y-y x=0$ due to primitivity of R .
Hence R is commutative.
Theorem 2: Let R be an alternative prime $\operatorname{ring}\left(x y^{2}\right) x-\left(y x^{2}\right) y \in Z(R)$ for all x, y in R.Then R is commutative.
Proof: First we shall prove that $Z(R) \neq(0)$.
Let us suppose that $Z(R)=(0)$.
Hence by hypothesis, $\left(\mathrm{xy}^{2}\right) \mathrm{x}=\left(\mathrm{yx} \mathrm{x}^{2}\right) \mathrm{y}$, for all x, y in R .
Replacing y by $\mathrm{y}+\mathrm{y} 2$ in 2.1 ,
we obtain $\left(x\left(y^{2}+y^{4}+2 y^{3}\right)\right) x=\left(y x^{2}+y^{2} x^{2}\right)\left(y+y^{2}\right)$
i.e. , $\left(x y^{2}\right) x+\left(x y^{4}\right) x+2\left(x y^{3}\right) x=\left(y x^{2}\right) y+\left(y x^{2}\right) y^{2}+\left(y^{2} x^{2}\right) y^{2}$
i.e., $2\left(x y^{3}\right) x=\left(y^{2} x^{2}\right) y+\left(y x^{2}\right) y^{2}$

Since $\left(y^{2} x^{2}\right) y=\left(y\left(y x^{2}\right)\right) y=y\left(\left(y x^{2}\right) y=y\left(\left(x y^{2}\right) x\right)=\left((y x) y^{2}\right) x=(y x)\left(y^{2} x\right)\right.$
and $\left(y x^{2}\right) y^{2}=((y x) x) y^{2}=(y x)\left(x y^{2}\right)$.
Hence 2.2 reduced to, $2\left(x y^{3}\right) x=(y x)\left(y^{2} x+x y^{2}\right)$
If R is not 2-torsion free, 2.3become $(y x)\left(y^{2} x+x y^{2}\right)=0$.
With $x=x+y$, this gives $\left(y x+y^{2}\right)\left(y^{2} x+y^{3}+x y^{2}+y^{3}\right)=0$..
i.e. $y^{2}\left(y^{2} x+y^{2}\right)=0$. ...2.4

Put $x=r x$ in 2.4, then we gety ${ }^{2}\left(y^{2}(r x)+(r x) y^{2}\right)=0$..
Since $y^{2}\left(y^{2} r\right)=y^{2}\left(r y^{2}\right)$,
From 2.4 and 2.5 , we have $y^{2}\left(r\left(y^{2} x+x y^{2}\right)\right)=0$.we write this as $y^{2} R\left(y^{2} x+x y^{2}\right)=0$
Since R is prime, either $\mathrm{y}^{2}=0$ or $^{2} \mathrm{x}+\mathrm{xy}^{2}=0$.
i.e., $y^{2} R \in Z(R)=0 y^{2} \in Z(R)=0$.

Thus in either case $y^{2}=0$ for every y in R.
If R is 2 - torsion free, we replace y by $\mathrm{y}+\mathrm{y}^{3}$ in 2.1 and get $2\left(x y^{4}\right) x=\left(y^{3} x^{2}\right) y+\left(x y^{2}\right) y^{3}$

$$
2\left(y^{2} x^{2}\right) y^{2}=y^{2}\left(\left(y x^{2}\right) y\right)+\left(\left(y x^{2}\right) y\right) y^{2}=y^{2}\left(\left(x y^{2}\right) x\right)+\left(\left(x y^{2}\right) x\right) y^{2}
$$

We write this as $\left(y^{2} x^{2}\right) y^{2}-y^{2}\left(\left(x y^{2}\right) x\right)=\left(\left(x y^{2}\right) x\right) y^{2}-\left(y^{2} x^{2}\right) y^{2}$ or $\left(y^{2} x\right)\left(x y^{2}-y^{2} x\right)=\left(x y^{2}-y^{2} x\right) y^{2}$
We replacing x by $\mathrm{x}+\mathrm{y}$: Then we get $y^{3}\left(x y^{2}-y^{2} x\right)=\left(x y^{2}-y^{2} x\right) y^{3}$
for all x, y in R .
Let I_{y}^{2} be the inner derivation by y^{2}
i.e. $x--\geq x y^{2}-y^{2} x$, and I_{y}^{3} be the inner derivation by y^{3}.

Then 2.6becomes $I_{y}^{3} I_{y}^{2}(x)=0$.
Thus the product of these derivation is again a derivation. Then by the lemma
we can conclude that either y^{2} or y^{3} in $\mathrm{Z}(\mathrm{R})$, i.e., y^{2} or y^{3} is zero.
If $y^{3}=0, y^{3}=0$, then 2.2 , becomes $\left(y^{2} x^{2}\right) y+\left(y x^{2}\right) y^{2}=0$..
Substituting $\mathrm{x}+\mathrm{y}$ for x , we get $\left(y^{2} x^{2}+y^{3}+2 y^{2}(x y)\right) y+\left(y x^{2}+y^{3}+2 y(x y)\right) y^{2}=0$ ie $2\left(y^{2} x\right) y^{2}+$ $2\left(y\left(x y^{3}\right) y^{2}\right)=0$.
Then we get $2\left(y^{2} x\right) y^{2}=0$ or $\left(y^{2} x\right) y^{2}=0$ or $\left(y^{2} R\right) y^{2}=0$ then $y^{2}=0$
Thus if $Z(R)=(0)$, then $y^{2}=0$ for every y in R.
Then $0=\left(x+y^{2}\right) x=(x y) x$ or $x R x=0$
Then $\mathrm{x}=0$ or $\mathrm{R}=0$, a contradiction. Therefore $\mathrm{Z}(\mathrm{R}) \neq(0)$.
Taking $\lambda \neq 0$ in $\mathrm{Z}(\mathrm{R})$ and let $x=x+\lambda$ in $\left(x y^{2}\right) x-\left(y x^{2}\right) x-\left(y x^{2}\right) y$ in $\mathrm{Z}(\mathrm{R})$, we get
$\lambda\left(x y^{2}-2(y x) y+y^{2}(x)\right)$ in $Z(\mathrm{R})$.
Since R is prime, we must havexy ${ }^{2}-2(y x) y+y^{2} x$ in $Z(R)$.
If $\lambda \mathrm{a}$ is in $\mathrm{Z}(\mathrm{R})$, then $\lambda a b-b \lambda a=0=\lambda(a b-b a)$.
Then, $\mathrm{R} \lambda$ (ab-ba) $=0=\lambda \mathrm{R}(\mathrm{ab}-\mathrm{ba})$ and since $\lambda \neq 0$, we have
$a b-b a=0$, i.e., is in $Z(R)$.
In 2.7, we let $x=x y$ and get
, $x y^{2}-2(y x) y+\left(y^{2} x\right) y$ in $Z(R)$, then y is in $Z(R)$,
Unless, $x^{2}-2(y x) y+y^{2} x=0$.for every x in R, and
y is in $Z(R)$, then, $x y^{2}-2(y x) y+y^{2} x$ is still zero.
Therefore,$x y^{2}+y^{2} x=2(y x) y$, for every x, y in R.
If R is 2 - torsion free, then R is commutative by lemma [38, P.5].
If R is not 2-torsion free, then 2.8. become $x y^{2}+y^{2} x=0$ or y^{2} is in $Z(R)$ for every y in R Then $(x+y)^{2}=$ $x^{2}+y^{2}+x y+y$ yis in $Z(R)$
i.e., $x y+y x$ is in $Z(R)$.

Let $x=x y$ and get $(x y+y x) y$ is in $Z(R)$.
Then y is in $Z(R)$, unless $x y+y x=0$, which also means y is in $Z(R)$
Thus $Z(R)=R$ and R is commutative.

References

[1]. Abu Khuazam. H, A commutativity theorem for rings, Math. Japonica., 25(1980), 593-595.
[2]. Bell, H.E. On some commuativity theorems of Herstein Arch. Math., 24(1973),34-38.
[3]. Boers. A.H. A note on a theorem on commutativity of rings, proc. Kon. Ned. Ak.R.Wet, Ser A 72(2),(1969),121-122
[4]. Girl. R.D.Rakhunde, R.R. and Dhoble, A.R. On commutativity of non- associative rings, The Math. Stu., 61(1-4), (1992), 149-152
[5]. Gupta, R.N. A note on commutativity of rings, The Math. Stu.,39(1971)184-186
[6]. Ram Awtar. A remark on the commutativity of certain rings. Proc. Amer Math.Soc., 41(1973) 370-372

Madana Mohana Reddy "On Commutativity of Non-Associative Primitive Rings with (xy)^2$y\left(x^{\wedge} 2 y\right) \in Z(R) "$ International Journal of Engineering Science Invention (IJESI), Vol. 08, No.12, 2019, PP 17-19

