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ABSTRACT: In this work, an additional convergence of the homotopic based approach is investigated for the 

three-dimensional (3-D) exponentially flow pattern subjected to inclined magnetic field. To this end, the 

auxiliary parameters contained in the series expansions are optimized by minimizing the square residual errors. 

After finding the CPU time incurred in each step, it is seen that the 9th-order homotopy based approach will 

converge with ℏ𝜑 = -0.243 and ℏ𝜑 = -0.243 quickly. 
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I. INTRODUCTION 

Besides two-dimensional cases, 3-D examination of incompressible viscous fluids with different 

thermodynamic properties has been greatly developed over the last two decades. In general, analyzing the 3-D 

wall shear problems, which can be considered as the boundary-layer theory (BLT) [1], is very important 

nowadays. One of the most challenging questions associated with the BLT is to identify the flow separation 

which occurs in adverse pressure gradients [2]. In this way, Sandeep et al. [3] studied the 3-D unsteady Casson 

fluid-driven flow with thermal and solutal stratification phenomena, and found that the effect of thermal 

diffusion can be ignored only in the vicinity of the wall at absolute zero. Indeed, they could capture the velocity 

and temperature distributions for cases subjected to uniform heat energy and justify the two-step boundary layer 

development which had been discovered by Williams and Rhyne [4]. Another example is the use of homotopic 

based approach to analyze the chemical reaction dynamics arising in 3-D fluid-driven flow past a bidirectional 

wall which was represented by Shehzad et al. [5]. Furthermore, Nayak [6], Rehman et al. [7], Hayat et al. [8,9], 

Shehzad et al. [10,11], Alsaedi et al. [12], Ashraf et al. [13] and Lu et al. [14] provided some rigorous 

justification of the homotopic based approach to investigate the 3-D flow measurements inside and outside. 

Independently, Nayak [15] developed those reported by Makinde and Animasaun [16] for finding the heat 

transfer characteristics in a 3-D water and ethylene glycol based Aluminum oxide nanofluid using the fourth 

order Runge-Kutta scheme. 

In addition to the techniques discussed above, it is to be noted that Takhar et al. [17], Rao et al. [18], 

Singh and Mathew [19], Rudraswamy et al. [20] and Kar [21] obtained accurate results for the effective 3-D 

flow patterns. Motivated by our experience, this work is aimed to answer the crucial question of how an 

additional convergence can be applied to the homotopic based approach for solving the 3-D Casson fluid-driven 

flow past an exponentially stretching sheet. The rest of this work is organized as follows. 

Section 2 provides a mathematical note on the Casson rheological model combined with governing 

differential equations. The solution methodology and its additional convergence are discussed in Sect. 3. 

Section 4 is exclusively devoted to the results and discussion. The main conclusions are presented in Sect. 5. 

 

II. MATHEMATICAL FORMULATION 
The constitutive equation for viscous stress tensor 𝝉 in the Casson rheological model can be expressed 

alternatively in the form [22]: 

𝛾 =
1

𝜇C
  𝝉 −  𝜏C 

2
       (1) 

where𝛾  is the shear rate, 𝜇𝑐  is the Casson dynamic viscosity coefficient and 𝜏𝑐  is the Casson yield stress. 

Based on the conservation of mass and linear momentum hypotheses, a 3-D fluid-driven flow through a 

porous medium is attained by the equations: 

𝑢,𝑥 + 𝑣,𝑦 + 𝑤,𝑧 = 0                                                                                                                                               (2a) 
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𝑢𝑢,𝑥 + 𝑣𝑢,𝑦 + 𝑤𝑢,𝑧 = 𝜐  1 +
1

𝛼1
 𝑢,𝑧𝑧 −  

𝜎ℬ2 sin
2 𝜉

𝜌
+

𝜐

𝛼2
 𝑢,                                                                                (2b) 

𝑢𝑣,𝑥 + 𝑣𝑣,𝑦 + 𝑤𝑣,𝑧 = 𝜐  1 +
1

𝛼1
 𝑣,𝑧𝑧 −  

𝜎ℬ2 cos2 𝜉

𝜌
+

𝜐

𝛼2
 𝑣,                                                                                  (2c) 

with the boundary conditions, 

𝑢 = 𝑈0 = 𝑈1𝑒
𝑥+𝑦
𝐿 , 𝑣 = 𝑉0 = 𝑉1𝑒

𝑥+𝑦
𝐿 , 𝑤 = 0,     at     𝑧 = 0,

𝑢 → 0, 𝑣 → 0,                                                      as  𝑧 → ∞,
                                                                                  (3) 

where 𝜐 is the kinematic viscosity coefficient, 𝛼1 is the Casson fluid parameter, 𝜎 is the electrical conductivity, 

ℬ  is the magnetic field strength, 𝜉  is the inclination angle of magnetic field, 𝜌  is the density, 𝛼2  is the 

permeability of porous medium, 𝑈0, 𝑈1, 𝑉0 and 𝑉1 are the constant velocities and 𝐿 is the characteristic length. 

Upon introducing the quantities 𝜂 =  𝑈1
2𝜐𝐿

𝑒
𝑥+𝑦
2𝐿 𝑧 , 𝑢 = 𝑈1𝑒

𝑥+𝑦
𝐿 𝜑,𝜂 , 𝑣 = 𝑈1𝑒

𝑥+𝑦
𝐿 𝜑 ,𝜂  and 

𝑤 = − 𝜐𝑈1
2𝐿

𝑒
𝑥+𝑦
2𝐿  𝜑 + 𝜑  , the governing differential equations and associated boundary conditions become: 

 1 +
1

𝛼1
 𝜑,𝜂𝜂𝜂 +  𝜑 + 𝜑  𝜑,𝜂𝜂 − 𝜑,𝜂

2 −  𝛼3
2 sin

2 𝜉 + 𝛼4 𝜑,𝜂 = 0,(4a) 

 1 +
1

𝛼1
 𝜑 ,𝜂𝜂𝜂 +  𝜑 + 𝜑  𝜑 ,𝜂𝜂 − 𝜑 ,𝜂

2 −  𝛼3
2 cos2 𝜉 + 𝛼4 𝜑 ,𝜂 = 0,(4b) 

𝜑 = 0, 𝜑,𝜂 = 1, 𝜑 = 0, 𝜑 ,𝜂 = 𝛼5,     at     𝜂 = 0,

𝜑,𝜂 → 0, 𝜑 ,𝜂 → 0,                                 as 𝜂 → ∞,
(5) 

where𝛼3 =  2𝜎ℬ2𝐿

𝜌𝑈1
 is the magnetic field parameter, 𝛼4 = 𝜐

𝛼2𝑈1
 is the porosity parameter and 𝛼5 is the velocity 

ratio parameter. 

Here, the local skin frictions can be defined as: 

𝐶𝜑𝑥 =
2𝜏0𝑥

𝜌𝑈0
2 , 𝐶𝜑 𝑦 =

2𝜏0𝑦

𝜌𝑉0
2 ,(6) 

where, 

𝜏0𝑥 = 𝜇C  1 +
1

𝛼1
 𝑢,𝑧  𝑧 = 0  , 𝜏0𝑦 = 𝜇C  1 +

1

𝛼1
 𝑣,𝑧 𝑧 = 0  .(7) 

By substituting Eq. (7) into Eq. (6) and then rearrangement, one would get: 

 𝑅𝑒𝑥𝐶𝜑𝑥 =  1 +
1

𝛼1
 𝜑,𝜂𝜂  0 ,  𝑅𝑒𝑦𝐶𝜑 𝑦 =  1 +

1

𝛼1
  

𝑉1

𝑈1
 𝜑 ,𝜂𝜂  0 ,(8) 

where𝑅𝑒𝑥 = 𝑈0𝐿

𝜐
 and 𝑅𝑒𝑦 = 𝑉0𝐿

𝜐
 are the local Reynolds numbers along the 𝑥- and 𝑦-axes, respectively. 

 

III. SOLUTION METHODOLOGY 
Choosing an admissible interval of auxiliary parameter for analyzing nonlinear algebraic equations 

gives a uniformly convergent series expansion. According to the basic concept of homotopy in topology, a 

system of nonlinear boundary value problems (NBVPs) should be discretized to an infinite number of sub-

NBVPs consisting of higher order derivatives expanded in some typical series expansions such as Taylor, 

Maclaurin, Laurent etc. [23, 24]. It is worth mentioning that the convergence of this scheme may be accelerated 

by means of minimizing the square residual error especially for those with the large intervals. Because, this 

minimization, which has seriously been proposed by KhoshrouyeGhiasi and Saleh [25-32], reduces the central 

processing unit (CPU) time (i.e., 𝑇CPU) without the loss of accuracy. Hence, in view of the high nonlinearity 

involved in Eq. (4), a homotopy based approach will be developed here. To this end, the homotopy functions 

ℋ𝜑  and ℋ𝜑  are constructed as [23]: 

ℋ𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞 ; 𝑞 =  1 − 𝑞 ℒ𝜑  𝜑 𝜂; 𝑞 − 𝜑0 𝜂  + 𝑞ℏ𝜑𝒩𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞  ,(9a) 

ℋ𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞 ; 𝑞 =  1 − 𝑞 ℒ𝜑  𝜑  𝜂; 𝑞 − 𝜑 0 𝜂  + 𝑞ℏ𝜑 𝒩𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞  ,(9b) 

where𝑞 ∈  0,1  is an embedding parameter, ℒ𝜑  and ℒ𝜑  are the auxiliary linear operators, 𝜑0  and 𝜑 0  are the 

initial guesses, ℏ𝜑  and ℏ𝜑  are the nonzero auxiliary parameters, and 𝒩𝜑  and 𝒩𝜑  are the nonlinear operators. 

Since 𝜑 𝜂; 𝑞  and 𝜑  𝜂; 𝑞  increase from the initial guesses to the exact solutions as 𝑞 is increased from 0 to 1, 

the bounds are obtained by setting Eq. (9) equal to zero. Also expanding 𝜑 𝜂; 𝑞  and 𝜑  𝜂; 𝑞  in a Taylor's series 

with respect to 𝑞 gives: 

𝜑 𝜂; 𝑞 = 𝜑0 𝜂; 0 +  
1

𝑗 !
𝜑,𝑞

 𝑗   𝜂; 𝑞 ∞
𝑗 =1  𝑞 = 0  = 𝜑0 𝜂 +  𝜑𝑗  𝜂 𝑞𝑗∞

𝑗=1 ,(10a) 

𝜑  𝜂; 𝑞 = 𝜑 0 𝜂; 0 +  
1

𝑗 !
𝜑 ,𝑞

 𝑗   𝜂; 𝑞 ∞
𝑗 =1  𝑞 = 0  = 𝜑 0 𝜂 +  𝜑 𝑗  𝜂 𝑞𝑗∞

𝑗=1 ,(10b) 

where𝜑𝑗  and 𝜑 𝑗  are the 𝑗th-order approximate derivatives. 

It is to be noted that by setting Eq. (9) and 𝑞 equal to zero, the so-called zeroth-order deformation 

equations can be rewritten as [23]: 

ℒ𝜑  𝜑 𝜂; 0 − 𝜑0 𝜂  = 0, ℒ𝜑  𝜑  𝜂; 0 − 𝜑 0 𝜂  = 0.(11) 
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 By differentiating ℋ𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞 ; 𝑞 = 0 and ℋ𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞 ; 𝑞 = 0, 𝑗 times with respect 

to 𝑞, setting 𝑞 = 0 and then dividing them by 𝑗!, the𝑗th-order deformation equations are obtained as: 

ℒ𝜑  𝜑𝑗  𝜂 − χ
𝑗
𝜑𝑗−1 𝜂  +

1

 𝑗−1 !
ℏ𝜑𝒩𝜑,𝑞

 𝑗−1  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞   𝑞 = 0  = 0,(12a) 

ℒ𝜑  𝜑 𝑗  𝜂 − χ
𝑗
𝜑 𝑗−1 𝜂  +

1

 𝑗−1 !
ℏ𝜑 𝒩𝜑 ,𝑞

 𝑗−1  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞   𝑞 = 0  = 0,(12b) 

where, 

χ
𝑗

=  
0,     𝑗 ≤ 1,
1,     𝑗 > 1.

 (13) 

It is desirable to apply the same procedure on the governing Eq. (4) and its associated boundary 

conditions given in Eq. (5). To this end, the initial approximations and auxiliary linear operators are selected as: 

𝜑0 𝜂 = 1 − 𝑒−𝜂 , 𝜑 0 𝜂 = 𝛼5 1 − 𝑒−𝜂 ,(14) 

ℒ𝜑 = 𝜑,𝜂𝜂𝜂  𝜂 − 𝜑,𝜂 𝜂 , ℒ𝜑 = 𝜑 ,𝜂𝜂𝜂  𝜂 − 𝜑 ,𝜂 𝜂 ,(15) 

with the properties, 

ℒ𝜑  𝜅1 + 𝜅2𝑒
𝜂 + 𝜅3𝑒

−𝜂  = 0, ℒ𝜑  𝜅4 + 𝜅5𝑒
𝜂 + 𝜅6𝑒

−𝜂  = 0,(16) 

where𝜅1-𝜅6  are the integration constants. The functions 𝜑 𝜂; 𝑞  and 𝜑  𝜂; 𝑞  can be expanded in a Taylor's 

series in the form: 

𝜑 𝜂; 𝑞 = 𝜑0 𝜂 + 𝑞𝜑1 𝜂 + 𝑞2𝜑2 𝜂 + ⋯ , 𝜑  𝜂; 𝑞 = 𝜑 0 𝜂 + 𝑞𝜑 1 𝜂 + 𝑞2𝜑 2 𝜂 + ⋯.(17) 

     The nonlinear operators involved in Eq. (9) are given by: 

𝒩𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞  =  1 +
1

𝛼1
 𝜑,𝜂𝜂𝜂  𝜂; 𝑞 +  𝜑 𝜂; 𝑞 + 𝜑  𝜂; 𝑞  𝜑,𝜂𝜂  𝜂; 𝑞 − 𝜑,𝜂

2  𝜂; 𝑞 

                                             − 𝛼3
2 sin

2 𝜉 + 𝛼4 𝜑,𝜂 𝜂; 𝑞 = 0,
(18a) 

𝒩𝜑  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞  =  1 +
1

𝛼1
 𝜑,𝜂𝜂𝜂  𝜂; 𝑞 +  𝜑 𝜂; 𝑞 + 𝜑  𝜂; 𝑞  𝜑,𝜂𝜂  𝜂; 𝑞 − 𝜑,𝜂

2  𝜂; 𝑞 

                                             − 𝛼3
2 cos2 𝜉 + 𝛼4 𝜑,𝜂 𝜂; 𝑞 = 0.

(18b) 

The zeroth-order deformation equations in this case are assumed to be: 

𝜑,𝜂𝜂𝜂  𝜂 − 𝜑0,𝜂 𝜂 = 0, 𝜑 ,𝜂𝜂𝜂  𝜂 − 𝜑 0,𝜂 𝜂 = 0,(19) 

with the boundary conditions, 
𝜑 𝜂; 𝑞 = 0, 𝜑,𝜂 𝜂; 𝑞 = 1, 𝜑  𝜂; 𝑞 = 0, 𝜑 ,𝜂 𝜂; 𝑞 = 𝛼5,     at     𝜂 = 0,

𝜑,𝜂 𝜂; 𝑞 → 0, 𝜑 ,𝜂 𝜂; 𝑞 → 0,                        as 𝜂 → ∞.
(20) 

Hence, the 𝑗th-order deformation equations are constructed as: 

𝜑𝑗 ,𝜂𝜂𝜂  𝜂 − 𝜑𝑗 ,𝜂  𝜂 = χ
𝑗
 𝜑𝑗−1,𝜂𝜂𝜂  𝜂 − 𝜑𝑗−1,𝜂  𝜂  

                                            −
1

 𝑗−1 !
ℏ𝜑𝒩𝜑 ,𝑞

 𝑗−1  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞   𝑞 = 0  = 0,
(21a) 

𝜑 𝑗 ,𝜂𝜂𝜂  𝜂 − 𝜑 𝑗 ,𝜂  𝜂 = χ
𝑗
 𝜑 𝑗−1,𝜂𝜂𝜂  𝜂 − 𝜑 𝑗−1,𝜂  𝜂  

                                           −
1

 𝑗−1 !
ℏ𝜑 𝒩𝜑 ,𝑞

 𝑗−1  𝜑 𝜂; 𝑞 , 𝜑  𝜂; 𝑞   𝑞 = 0  = 0,
(21b) 

which goes to zero boundary conditions. After finding the integration constants 𝜅1-𝜅5, the 𝑗th-order approximate 

solutions of Eq. (21) take the form: 

𝜑𝑗  𝜂 = 𝜑𝑗
∎ 𝜂 − 𝜑𝑗

∎ 0 + 1 − 𝜑𝑗 ,𝜂
∎  0  1 − 𝑒−𝜂  ,(22a) 

𝜑 𝑗  𝜂 = 𝜑 𝑗
∎ 𝜂 − 𝜑 𝑗

∎ 0 + 𝛼5 − 𝜑 𝑗 ,𝜂
∎  0  𝛼5 − 𝑒−𝜂 ,(22b) 

where𝜑𝑗
∎ 𝜂  and 𝜑 𝑗

∎ 𝜂  are the particular solutions. Hence, the 𝑝th-order approximate solutions are calculated 

as: 

𝜑𝑝 𝜂 =  𝜑𝑗  𝜂 𝑝
𝑗=0 , 𝜑 𝑝 𝜂 =  𝜑 𝑗  𝜂 𝑝

𝑗=0 .(23) 

 Here, the square residual errors are expressed as [33]: 

∆𝑝
𝜑

=
1

𝑖+1
  𝒩𝜑   𝜑 𝜂 𝑝

𝑚=0 ,  𝜑  𝜂 𝑝
𝑚=0   𝜂 = 𝑛𝛿𝜂  

2𝑖
𝑛=0 ,(24a) 

∆𝑝
𝜑 

=
1

𝑖+1
  𝒩𝜑   𝜑 𝜂 𝑝

𝑚=0 ,  𝜑  𝜂 𝑝
𝑚=0   𝜂 = 𝑛𝛿𝜂  

2𝑖
𝑛=0 ,(24b) 

where, 

∆𝑝,ℏ𝜑

𝜑
 ℏ𝜑 = 0, ∆𝑝,ℏ𝜑 

𝜑 
 ℏ𝜑  = 0.(25) 

 

IV. RESULTS AND DISCUSSION 
To validate the accuracy and reliability of the above homotopy based approach, the geometric and 

physical properties involved in Eqs. (4) and (5), unless stated otherwise, are represented in Table 1. It is to be 

mentioned here that the physical properties given in Table 1 have been selected in such a way that they match 

with the case studied by Butt et al. [34], and the only discrepancy could be due to the negligible unsteadiness. 

Furthermore, the auxiliary parameters reported by Butt et al. [34], that did not take into account any additional 
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convergence of the homotopy based approach, are assumed to be ℏ𝜑 = ℏ𝜑 = -0.3. In view of the results shown 

in Tables 2 and 3, it is evident that the 9th-order homotopy based approach is so accurate compared to that 

reported by Yousif et al. [35]; because the relative error in these two cases does not exceed 0.097% and 0.209%. 

Tables 2 and 3 respectively provide the variation of local skin friction along the 𝑥- and 𝑦-axes versus 

values of the porosity parameter. According to these tables, the local skin frictions in both cases enhance when 

the porosity parameter is increased. Hence, a high accuracy approximation can be expected if the 9th-order 

homotopy based approach is employed. 

 
Table 1.Geometric and physical properties. 

𝛼1 𝛼3 𝜉 𝛼4 𝛼5 

0.3 1 45° 0.5 0.5 

 
Table 2.Verification of the local skin friction along the 𝑥-axis with physical properties 𝛼1 = 1 and 𝛼3 = 0. 

𝛼4 Present (ℏ𝜑 = -0.3) DTM-Padé [35] 

𝑝 = 5 𝑝 = 7 𝑝 = 9 

0 1.5411 1.5429 1.5451 1.5472 

0.5 1.8319 1.8335 1.8352 1.8363 

1 2.0827 2.0844 2.0865 2.0885 

 
Table 3.Verification of the local skin friction along the 𝑦-axis with physical properties 𝛼1 = 1 and 𝛼3 = 0. 

𝛼4 Present (ℏ𝜑 = -0.3) DTM-Padé [35] 

𝑝 = 5 𝑝 = 7 𝑝 = 9 

0 0.6540 0.6552 0.6569 0.6589 

0.5 0.8176 0.8195 0.8217 0.8230 

1 0.9549 0.9573 0.9598 0.9614 

 

 
Fig. 1. Selection of aℏ𝜑  and bℏ𝜑 . 

 

The variation of square residual errors versus values of the auxiliary parameters with properties given 

in Table 1 is depicted in Fig. 1 for the case 𝑝 = 9. As it is seen from this figure, the square residual errors will 

be minimized while the auxiliary parameters are selected as ℏ𝜑 = -0.243 and ℏ𝜑 = -0.243. To explain more, 

optimal values of the auxiliary parameters and associated CPU times as well as minimum values of the square 

residual errors are reported in Tables 4 and 5. 

Based on the results presented in Tables 4 and 5, by increasing values of 𝑝 the square residual errors 

clearly reduce which is only due to the additional convergence of this scheme. This fact can be desirable to 

achieve a series expansion with a faster rate of convergence. 

In Tables 6 and 7, the accuracy of 9th-order homotopy based approach with and without using optimal 

values of the auxiliary parameters is compared with that reported by homotopy perturbation method (HPM) [36] 

and a closed-form solution [24]. According to these tables, it is observed that the 9th-order homotopy based 

approach combined with ℏ𝜑 = -0.243 and ℏ𝜑 = -0.243 agrees remarkably well with those presented by Ariel 

[36, 37]. Hence, using the 9th-order homotopy based approach with ℏ𝜑 = -0.243 and ℏ𝜑 = -0.243 is strongly 

suggested; only because it can provide more accurate results than those of ℏ𝜑 = ℏ𝜑 = -0.3. Furthermore, Tables 

6 and 7 show the effect of velocity ratio parameter on reducing the axial and transverse velocities, respectively. 
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It is to be mentioned here that a similar conclusion regarding micro-convection model of nanofluids past an 

exponentially stretching sheet has also been presented by Nayak et al. [38]. 

In view of the available results depicted in Table 8, one can conclude that the velocity distribution 

essentially converges for ℏ𝜑 = -0.243 and ℏ𝜑 = -0.243. With this important observation, the combined effects 

of Casson fluid parameter and inclined magnetic field on the variation of local skin friction is given in Table 9. 

From this table, it is seen that the local skin friction is an enhancing function of 𝛼3and 𝜉,while it is a diminishing 

function of 𝛼1. 

 
Table 4.Convergence of series expansion along the 𝑥-axis with the properties given in Table 1, when the CPU time is 

subjected to two digits. 

𝜂 𝑝 = 5  𝑝 = 7  𝑝 = 9 

ℏ𝜑,opt ∆𝑝
𝜑

 𝑇CPU (s)  ℏ𝜑,opt ∆𝑝
𝜑

 𝑇CPU (s)  ℏ𝜑,opt ∆𝑝
𝜑

 𝑇CPU (s) 

0 -0.282 8.24×10-7 5.11  -0.257 4.01×10-7 10.19  -0.243 8.55×10-8 25.36 

0.2 -0.282 8.76×10-7 5.11  -0.257 4.50×10-7 10.19  -0.243 9.02×10-8 25.36 

0.4 -0.282 9.29×10-7 5.11  -0.257 4.96×10-7 10.19  -0.243 9.61×10-8 25.36 

0.6 -0.282 9.83×10-7 5.11  -0.257 5.48×10-7 10.19  -0.243 1.14×10-7 25.36 

0.8 -0.282 1.26×10
-6

 5.11  -0.257 6.09×10
-7

 10.19  -0.243 1.70×10
-7

 25.36 

1 -0.282 1.89×10-6 5.11  -0.257 6.73×10-7 10.19  -0.243 2.37×10-7 25.36 

 
Table 5.Convergence of series expansion along the 𝑦-axis with the properties given in Table 1, when the CPU time is 

subjected to two digits. 

𝜂 𝑝 = 5  𝑝 = 7  𝑝 = 9 

ℏ𝜑 ,opt ∆𝑝
𝜑 

 𝑇CPU (s)  ℏ𝜑 ,opt ∆𝑝
𝜑 

 𝑇CPU (s)  ℏ𝜑 ,opt ∆𝑝
𝜑 

 𝑇CPU (s) 

0 -0.272 9.52×10-7 6.66  -0.240 3.71×10-7 11.70  -0.236 7.14×10-8 30.90 

0.2 -0.272 1.23×10-6 6.66  -0.240 4.02×10-7 11.70  -0.236 8.88×10-8 30.90 

0.4 -0.272 1.79×10-6 6.66  -0.240 4.56×10-7 11.70  -0.236 9.30×10-8 30.90 

0.6 -0.272 2.45×10-6 6.66  -0.240 5.22×10-7 11.70  -0.236 9.81×10-8 30.90 

0.8 -0.272 3.29×10-6 6.66  -0.240 5.76×10-7 11.70  -0.236 1.19×10-7 30.90 

1 -0.272 3.91×10-6 6.66  -0.240 6.31×10-7 11.70  -0.236 1.61×10-7 30.90 

 
Table 6. Effect of ℏ𝜑 ,opt on the local skin fiction along the 𝑥-axis. The values in parentheses are those obtained through 

ℏ𝜑 = -0.3. 

𝛼5 Present HPM [36] Exact [37] 

𝑝 = 5 𝑝 = 7 𝑝 = 9 

0 1 (1) 1 (1) 1 (1) 1 1 

0.5 1.092705 (1.092622) 1.092799 (1.092746) 1.092886 (1.092855) 1.088662 1.093095 

1 1.172488 (1.172418) 1.172583 (1.172522) 1.172666 (1.172632) 1.178511 1.173721 

 
Table 7. Effect of ℏ𝜑 ,opt on the local skin fiction along the 𝑦-axis. The values in parentheses are those obtained through 

ℏ𝜑 = -0.3. 

𝛼5 Present HPM [36] Exact [37] 

𝑝 = 5 𝑝 = 7 𝑝 = 9 

0 0 (0) 0 (0) 0 (0) 0 0 

0.5 0.463550 (0.463521) 0.463591 (0.463571) 0.464014 (0.464002) 0.476290 0.465205 

1 1.172527 (1.172480) 1.172641 (1.172599) 1.172688 (1.172661) 1.178511 1.173721 

 
Table 8.Velocity distribution with geometric and physical properties given in Table 1. 

𝜂 𝜑,𝜂  𝜂   𝜑 ,𝜂  𝜂  

ℏ𝜑 = -0.3 ℏ𝜑,opt = -0.243  ℏ𝜑 = -0.3 ℏ𝜑 ,opt = -0.236 

0 1 1  0.5 0.5 

0.1 0.9436 0.8621  0.4902 0.4329 

0.2 0.8615 0.7995  0.4580 0.3720 

0.3 0.7720 0.6951  0.3920 0.3219 

0.4 0.6793 0.6340  0.3432 0.2524 

0.5 0.6204 0.5517  0.3012 0.1976 

0.6 0.5380 0.4614  0.2470 0.1249 

0.7 0.4601 0.3522  0.2135 0.0942 

0.8 0.3917 0.2396  0.1573 0.0231 
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0.9 0.3318 0.1570  0.1046 0.0057 

1 0.2314 0.0831  0.0534 0 

2 0.1170 0.0096  0.0072 0 

3 0.0812 0  0 0 

4 0.0246 0  0 0 

5 0.0019 0  0 0 

6 0 0  0 0 

 

V. CONCLUSION 
This work was devoted to optimizing the homotopy based approach for 3-D Casson fluid-driven flow under 

external magnetic field. A comparison of this scheme with other cases proved that the 9th-order homotopy based approach 

results in fast and accurate calculations. Furthermore, it was shown that this scheme can be regarded as a useful tool for 

solving strongly nonlinear differential equations at some time in the future. 
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